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Global high-resolution ultrafine 
particle number concentrations 
through data fusion with machine 
learning
Pantelis Georgiades   1,2 ✉, Matthias Kohl   3, Mihalis A. Nicolaou1, Theodoros Christoudias   2, 
Andrea Pozzer2,3, Constantine Dovrolis1 & Jos Lelieveld   2,3 ✉

Atmospheric pollution causes millions of excess deaths annually, with particulate matter (PM) being a 
major concern. While research has traditionally focused on PM10 and PM2.5, ultrafine particles (UFPs, 
diameter < 100 nm) have emerged as a critical human health risk due to their ability to penetrate 
deeply into the respiratory system, transmigrate into the bloodstream and induce systemic health 
impacts. The total particle number concentration (PNC) serves as a proxy measure for UFP prevalence, 
as UFPs dominate particle number counts despite contributing minimally to total particle mass. This 
study presents the first global datasets of PNCs and UFPs at 1 km resolution over land by combining 
ground station measurements with machine learning. We developed an XGBoost model to predict 
annual PNC levels from 2010–2019, integrating diverse environmental and anthropogenic variables 
available at the global scale. Our model achieves an R2 of ≥0.9 and a mean relative error of about 30% 
for polluted urban areas, based on comparison with test datasets, and its performance was evaluated 
by including spatial and temporal cross-validation schemes. We find that global annual mean PNCs 
near the Earth’s surface vary between a few thousand per cm3 in pristine environments up to more 
than 40,000 per cm3 in some urban centres and that UFPs contribute about 91% to PNCs. The model 
incorporates a conformal prediction framework to provide reliable coverage intervals, making local-to-
global PNC and UFP data available and supporting exposure assessments and health impact studies.

Background & Summary
The growing concern surrounding atmospheric pollution stems from its well- established, detrimental impacts 
on human health1. Recent estimates suggest that air pollution is responsible for many millions of excess deaths 
annually and a leading contributor to the loss of healthy years of life2,3. Particulate matter (PM), a diverse cat-
egory of airborne pollutants, consists of minute particles of solids and liquids suspended in the air, classified 
based on their aerodynamic diameter. Although historical evidence has long underscored the risks associated 
with PM exposure, recent global trends have amplified these concerns4,5. The growing population with inten-
sifying industrialization, urbanization, as well as agricultural emissions, have collectively led to a substantial 
increase in atmospheric PM levels6.

Until recently, the emphasis was predominantly on particulate matter (PM) with diameters less than 10 μm 
(PM10) and 2.5 μm (PM2.5), often referred to as coarse and fine particulate matter, respectively7,8. Prolonged 
exposure to enhanced concentrations of these particles has been demonstrated to exert adverse effects on the 
respiratory and cardiovascular systems. Both PM10 and PM2.5 affect the respiratory tract, with the smaller par-
ticles generally penetrating more deeply into the lungs, and long-term exposure causes inflammation and oxi-
dative stress, associated with enhanced disease risk, leading to chronic obstructive pulmonary disease (COPD), 
asthma, lung cancer, strokes, and heart attacks9,10.
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There is growing concern about the health implications of PM smaller than PM2.5. At the lower end of the 
size distribution, ultrafine particles (UFPs) are those with an aerodynamic diameter less than 0.1 μm or 100 nm 
(PM0.1), a subset of PM2.5

11. Despite constituting a minor proportion of PM2.5 by mass, UFPs dominate in terms 
of number concentrations. In fact, the total particle number concentration (PNC) is often employed as a proxy 
measure for the UFP prevalence12. Natural sources of UFPs include new particle formation from inorganic and 
organic gases emitted by marine and forest ecosystems. The main sources of UFPs relevant to health, though, 
are anthropogenic and related to the use of fossil and biofuels, such as oil and coal combustion, notably from 
vehicular, marine and air traffic, energy generation, and various industrial sources13.

The small size of UFPs facilitates deep infiltration into the respiratory system, allowing them to reach the 
alveoli, transmigrate into the bloodstream and thereby cause adverse health effects in the vasculature and distant 
organs14. The large number combined with the and large surface-to-mass ratio of UFPs may promote interac-
tions with biological tissue, potentially instigating inflammatory responses and oxidative stress. These molec-
ular interactions have been implicated in several health conditions, including respiratory and cardiovascular 
diseases, as well as carcinogenesis15. Furthermore, recent epidemiological studies in New York and major cities 
in Canada have identified links between long-term exposure to UFPs and increases in non-accidental mortality 
in adults and children16,17.

Fine-grained maps of UFP concentrations are necessary for epidemiological assessments aiming at unrav-
elling relationships between air pollution and public health outcomes18. High-resolution mapping enables 
researchers to conduct detailed spatial analyses, identify vulnerable populations, and understand the complex 
interplay between environmental factors and health. Such maps are fundamental for policymakers to formu-
late targeted interventions and regulatory policies to reduce UFP exposure and mitigate associated health risks 
effectively19.

The investigation of UFPs and their impact on human health is hindered by the scarcity of measurements, 
especially at the global scale. Existing monitoring systems lack the spatial coverage necessary for a comprehen-
sive understanding of UFP distributions and determining long-term exposure. Furthermore, the intricate nature 
of UFPs, characterized by their small size and dynamic behaviour, poses challenges for traditional measurement 
techniques20. The recent literature on estimating the long-term mean, spatially distributed UFP concentrations 
largely depends on two main methodologies: land use regression models and chemical transport models. Each 
of these approaches, however, comes with limitations that impact their effectiveness in various contexts.

Land use regression models are known for their ability to provide high spatial resolution, making them par-
ticularly useful for detailed local analyses. However, their utility is confined to specific geographic regions with 
good coverage of UFP measurements. The reliance on local data and the necessity for model training procedures 
to be tailored to the particularities of each area was highlighted in studies by Saha (2021) and Jones (2020)21,22. 
Such dependence on localized data sources and custom training means that extending these models beyond 
their original scope can be challenging. Moreover, LUR model accuracy for UFPs is typically moderate, with 
explained variance (R2) ranging from 0.38 to 0.66 across different study areas, and cross-validation performance 
often 8–11% lower than model R2 values22,23. External validation studies demonstrate R2 values of approximately 
0.50–0.53 when applied to independent datasets, with root mean square errors ranging from 2,800 to 3,500 
particles/cm−323. The transferability of LUR models to new geographic regions remains limited, with substantial 
reductions in explained variance when models are applied beyond their training domains24.

Chemical transport models extend an option to extend the geographical coverage, as they are designed to 
achieve broader spatial extent up to global applicability. However, this extensive coverage comes at the cost 
of spatial resolution due to computational constraints. Typically, these models operate at coarse resolution, in 
the range of 10 to 100 kilometres25. While recent advances have enabled some regional CTMs to reach spatial 
resolutions as fine as 3-5 km, or even sub-kilometer scales in limited applications26,27, substantial uncertainties 
persist in UFP prediction. CTMs are inherently limited by uncertainties in emission inventories, nucleation 
and coagulation parameterizations, meteorological inputs, and chemical mechanism representations26. These 
challenges often result in moderate model performance, with correlation coefficients typically ranging from 0.40 
to 0.82 when validated against observational data, and systematic biases that vary by season and location27. The 
models frequently struggle to resolve steep spatial gradients in UFP concentrations near major sources such as 
roads, particularly in densely populated urban areas where strong local UFP emissions are associated with rapid 
changes over short distances26. This can obscure the details of UFP distributions that are critical for accurate 
exposure assessment.

To overcome these limitations, we present three key contributions in this study. First, we develop the first 
global maps of particle number concentration (PNC) at a 1 km spatial resolution, bridging the critical gap 
between local-scale land use regression models and coarse-resolution chemical transport models. Second, we 
introduce a machine learning framework that integrates limited ground measurements with diverse auxiliary 
data to predict PNC on a global scale, leveraging the XGBoost machine learning (ML) model for its capability 
to capture complex, non-linear relationships. Finally, we implement a statistically robust uncertainty quantifica-
tion approach using conformal prediction, which provides reliable coverage intervals without depending on the 
assumption of normal data distribution.

Note the currently highest resolution global population data are also available on a 1 km grid, implying 
our health assessment studies can be performed by combining these datasets. Our methodology leverages 
ground station measurements worldwide and incorporates diverse auxiliary information, including the degree 
of urbanisation, built-up volume, anthropogenic emissions and combustion-related pollution concentrations. 
The XGBoost regression model predicts annual average PNC at 1 km spatial resolution over land, while the con-
formal prediction framework provides statistically robust 95% coverage intervals without prior assumptions of 
the data distribution. Additionally, we implement SHAP (SHapley Additive exPlanations) to investigate how the 
model reaches its predictions across different locations and environmental characteristics.
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To assess the reliability of our predictions, we evaluated the model’s performance using multiple validation 
strategies. The XGBoost model achieved an R2 of >0.90 on the test dataset. Spatial and temporal cross-validation 
further demonstrated the applicability of the model, with R2 values between 0.77 and 0.87, respectively.

Our approach provides high-resolution PNC and UFP estimates that can support exposure assessment 
studies, particularly in regions lacking ground-based measurements. Section 2 describes the data sources and 
machine learning methodology, Section 3 presents the global PNC distribution patterns and model validation 
results, and Section 4 discusses the implications for air quality management and public health research.

Methods
In the first part, we discuss the data sources and the data fusion methodology we utilised to standardise and 
homogenise them, from which the training and inference datasets were created. In the second part, we provide 
the specifics of our modelling approach, describing the training procedures and model performance evaluation 
using relevant metrics.

Particle number concentrations.  In acquiring the target variable for the ML model, we employed an 
approach fusing data from distinct sources. Initially, we accessed the EBAS database, which serves as the offi-
cial outlet for the European Monitoring and Evaluation Programme (EMEP) and is hosted and operated by the 
Norwegian Institute for Air Research (NILU)28. We queried the database using the pyebas (https://github.com/
defve1988/pyebas) Python API to retrieve all the available data for particle size distribution, PSD (particle_num-
ber_size_distribution component) and, particle number concentration, PNCs (particle_number_concentration 
component) for the years 2000–2020. Subsequently, we converted PSD data to PNC, by summing over the size 
distribution for each time step, and calculated the yearly average.

The data was retrieved in NetCDF format and for the particle_number_size_distribution and particle_num-
ber_concentration variables were used for PSD and PNC, respectively. The data entries were filtered with respect 
to the reported flag IDs; only entries with flag ID 000 (Valid measurement) and flag ID 100 (Checked by data 
originator. Valid measurement, overrides any invalid flags) (https://projects.nilu.no/ccc/flags/) were used. To 
ensure adequate representation of extended-term means, we excluded years with less than 150 unique days with 
available data. Furthermore, for the PSD data, the logarithmic diameter sizes were converted as follows:
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Similarly, we retrieved PNC data from the Global Monitoring Laboratory (GML, https://gml.noaa.gov) of 
the National Oceanic and Atmospheric Administration (NOAA) agency for the same time period. The database 
was queried for the aerosol category and download the corresponding particlenumberconcentration datasets for 
the available stations in .nas format. The conc variable was used and the data entries were filtered according to 
the reported numflag entry (only entries with flag = 0 were used), and stations with data in less than 150 days 
in each year were omitted.

In addition, we conducted an extensive literature review to supplement the ground station data with infor-
mation derived from published scientific articles presenting yearly PNC averages worldwide21,25,29. This literature 
review aimed to supplement the comprehensiveness of our dataset, by including measurements from diverse 
geographical locations and monitoring networks. Table 1 presents a summary of the unique entries, locations 
and the resulting yearly observations we were able to generate from each source. Figure 1 shows the geographical 
distribution of measurement locations in our dataset. Each location is represented by a circle, where both the 
circle’s diameter and colour indicate the mean PNC averaged over all available years at that site.

The 836 annual PNC observations listed in Table 1 originate from 155 distinct sites and 2.6 million individual 
sub-daily measurements acquired with condensation particle counters (CPC), mobility particle size spectrom-
eters (SMPS/MPSS), and optical particle counters (OPC). Instrument classes, size-bin definitions, and tempo-
ral resolution differed across networks: EBAS and NOAA-GML stations typically report PSDs at 10-minute to 
1-hour resolution, whereas literature compilations often provide daily or campaign-mean values. To harmonize 
these data, all records were re-screened for network quality flags, retaining only values flagged as valid or ver-
ified; sub-daily data were aggregated to daily means and subsequently to annual means provided that at least 
150 unique days per year were available, a threshold commonly adopted in long-term aerosol climatologies 
to balance representativeness and data yield30. For data from stand-alone CPCs reporting only total number 
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concentration, no size harmonization was necessary since CPC lower cut-offs lie within 3–10 nm, including the 
full ultrafine particle range relevant for this work.

Global human settlement layer.  The Global Human Settlement Layer (GHSL) by the European Commission 
offers open and freely accessible data and tools for evaluating human presence and activities. In this work, 
the global built-up volume (GHS-BUILT-V) dataset was employed31,32, which includes both residential and 
non-residential buildings, encompassing industrial and commercial complexes. Additionally, datasets such 
as the degree of urbanization (GHS-SMOD)32,33 and human settlement (GHS-POP)34,35 were used. The GHSL 
datasets were employed to provide insight into anthropogenic activities and industrialization indicators, such 
as instances where a high built-up volume coincides with a low population density, potentially signalling the 
presence of industrial zones or other high-emission activities.

The datasets were retrieved in GeoTIFF format (WSG84 projection) from Copernicus and no temporal or 
spatial interpolations were conducted, and the closest year available for each of the datasets was utilized, as these 
variables do not change much over time. Given the strong linkage between emissions and human activity, these 
datasets can serve as proxies for pollution emissions.

Global NO2 and PM2.5.  Two global datasets of NO2 and PM2.5 were incorporated into the feature set to deter-
mine the yearly average concentration of these air pollutants36,37. These datasets provide the yearly average con-
centrations of NO2 and PM2.5 for each grid cell. The NO2 datasets were retrieved in GeoTIFF format, whereas the 
PM2.5 datasets in NetCDF format. In both datasets, each yearly average was downloaded as a separate dataset. 

Type Unique locations Yearly observations Unique entries Reference

PSD 55 403 137,421 EBAS28,85–103

PNC 37 351 2,585,052 EBAS28,104–211

PNC 6 17 17 GML - NOAA212

PNC 20 20 20 Kohl et al.25

PSD 17 34 34 Kohl et al.25

PNC 38 45 45 Saha et al.21

PNC 8 13 13 Aalto et at.29

Total 155 836

Table 1.  Summary table of the PNC and PSD data used for training the machine learning model in this 
study. Unique entries refers to individual measurements, whereas yearly observations refers to the final yearly 
aggregated data points used in training/evaluation of the ML models.

Fig. 1  Geographical distribution of measurement locations in the dataset. Circle sizes indicate the number of 
observational datasets from each location (ranging from 1 to 21), while colours represent the mean particle 
number concentration (PNC) in cm−3 at each location. The background greyscale map shows global human 
population density on a logarithmic scale, providing context for the spatial relationship between measurements 
and population centres.
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We note that these datasets were specifically generated for epidemiological and health burden studies, similar 
to the scope of this work.

We opted to include both ambient concentrations of NOx and PM2.5 as well as emission inventories as input 
features in the model to capture the multiple processes influencing particle number concentrations at high reso-
lution. Ambient concentrations reflect not only direct emissions, but also the effects of atmospheric dispersion, 
chemical transformation, remove processes and regional background levels, which emissions data do not cap-
ture. Moreover, background pollutant concentrations provide essential information on baseline exposures and 
long-range transport, especially between urban and peri-urban areas22,38.

The base spatial grid utilized throughout this study was constructed on the orthogonal latitude-longitude 
grid of the NO2 dataset. Furthermore, constrained by the latitude range of the PM2.5 dataset, this study spans 
latitudes ranging from 55ºS to 68ºN degrees.

Emissions.  The gridded distributions of global anthropogenic emissions from the Copernicus Atmosphere 
Monitoring Service (CAMS) were utilized to obtain combustion-related emissions data39. The dataset com-
prises modified Copernicus Atmosphere Monitoring Service Information for the year 2023, retrieved from the 
Copernicus Atmosphere Data Store. The global emission inventory from CAMS was utilized to derive proxies 
to estimate PNCs and consider anthropogenic contributions, especially from combustion sources, by including 
yearly average emissions of black carbon (BC), carbon monoxide (CO), carbon dioxide (CO2) and nitrogen 
oxides (NOx).

The cams-global-emission-inventories dataset was queried using the cdsapi in Python and a separate NetCDF 
file was retrieved for each year/variable combination, for the black_carbon, carbon_monoxide, carbon_dioxide 
and nitrogen_oxides species. The datasets contain both individual sector emissions and the cumulative sum, with 
the total variable selected for each species (sum variable). Emphasis was placed on emissions over land, thus, 
grid cells classified as 100% “open sea” were excluded. Only emissions resulting from combustion processes were 
considered for this study.

The yearly averages per grid cell were calculated using the resample method of the Python xarray library. 
Spatial interpolations were performed to redistribute the emissions in each grid cell with respect to population 
density and built-up density, as described below.

Temperature.  The fifth-generation ECMWF reanalysis for global climate and weather, ERA5, served as the 
source for the temperature feature in our analysis, which may be viewed as a proxy for meteorological condi-
tions. Specifically, the 2m temperature (t2m) variable was obtained format from the Copernicus Climate Change 
Service (C3S) Climate Data Store (CDS)40. Temperature was included as a parameter due to its potential to 
influence and reflect atmospheric processes. Temperature can also affect UFP formation and growth through 
photochemical oxidation of volatile organic compounds (VOCs) and nitrogen oxides (NOx), as well as con-
densation and evaporation of semi-volatile reaction products41,42. The dataset contains modified Copernicus 
Climate Change Service information (2023), retrieved from the Copernicus Atmosphere Data Store. Yearly 
averages for each grid cell were computed using the resample method of the xarray library in Python 3.11, and 
no spatial interpolations were applied during this process.

Boundary layer height.  The Boundary Layer Height (BLH) was also incorporated from the ERA5 reanalysis 
dataset. BLH directly relates to the vertical mixing and dilution of particles in the lower atmosphere, thus, by 
incorporating BLH data we aim to account for the influence of atmospheric stability on surface particle concen-
trations. Shallow boundary layers, typically occurring during nighttime or winter conditions, lead to particle 
accumulation near the surface, while deeper boundary layers are associated with enhanced vertical mixing and 
dilution43. The ERA5 dataset was also used for this variable; the CDS datastore was queried for the blh variable 
using the cdsapi, with separate NetCDF files downloaded for each year.

Precipitation.  Precipitation is a relevant meteorological parameter for PNC prediction, as it plays an important 
role in particle removal through wet deposition processes. We have incorporated the total precipitation for each 
grid cell from the ERA5 reanalysis dataset (tp variable, obtained using the cdsapi in NetCDF format), which 
accounts for one of the primary removal pathways of atmospheric particles. Wet deposition is especially impor-
tant in regions with frequent precipitation events, where particle removal can substantially influence the annual 
average concentration that our model aims to predict44,45.

Road network.  The Global Roads Open Access Data Set v1 (gROADSv1) is a comprehensive global road net-
work database that incorporates the major roads and highways worldwide. We included this dataset as road 
traffic represents one of the primary sources of ultrafine particle emissions in urban environments. The dataset 
provides detailed spatial information about traffic networks on a global scale, by including roads and highways 
as line-shapes in shapefile format. To convert to a gridded dataset, we calculated the number of roads inter-
secting every cell of the global grid, as a proxy for capturing the traffic-related particle emissions. This kind of 
information is important to this study since vehicle exhaust emissions have been shown to create strong spatial 
gradients in particle number concentrations, with elevated levels typically observed near major roadways and 
traffic corridors46.

https://doi.org/10.1038/s41597-025-06055-9


6Scientific Data |         (2025) 12:1790  | https://doi.org/10.1038/s41597-025-06055-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

Population.  The global population dataset from WorldPop (www.worldpop.org) was incorporated into our 
analysis47, which provides population counts on a global scale. The data were obtained directly from the organ-
ization’s website, without any temporal or spatial manipulation.

Data spanning the years 2000 to 2020 were retrieved to ensure a comprehensive temporal coverage for 
our analysis. The WorldPop population counts dataset serves as a fundamental resource in our study, offering 
insights into the spatial distribution of human populations across diverse regions worldwide.

Data homogenization.  The NO2 dataset at 0.01° grid resolution, roughly 1 km at the equator and a decreasing 
longitude extent towards the poles (about 0.5 km at 60° latitude), served as the baseline for establishing a uni-
form gridded dataset. This dataset functioned as the reference point for aligning the spatial resolution of other 
datasets, ensuring consistency throughout the training and inference processes. To integrate land use data into 
the uniform dataset, the 100 grid points within each 1km grid cell were identified. For each land use class, the 
percentage coverage was extracted, resulting in seven features.

Datasets sharing the same spatial resolution as that of NO2, such as the PM2.5 and the GHSL data, were seam-
lessly integrated into the uniform gridded dataset, ensuring the coherence of the datasets without introducing 
discrepancies.

To address the spatial resolution disparity between the emissions dataset (10km grid) and other datasets 
(1km grid), a redistribution process was executed. This downscaling process maintained the total emissions 
within each 10 km grid cell (Em10km) while redistributing them to a 1km resolution (Em1km). Downscaling was 
achieved by linearly weighting emissions based on population and built-up volume, ensuring harmonisation 
with other datasets, following Kohl et al.25, as follows: 

Em Em
Pop Pop BV BV( / / )

2 (3)km km
km km km km

1 10
1 10 1 10= ×

+

where, Pop1km and BV1km is the population density and built-up volume in the 1km grid cell, respectively, and 
Pop10km and BV10km the total population density and build-up volume in the 10 km grid cell.

Finally, Table 2 provides a list of the feature set employed in this study, as well as the temporal and spatial 
resolution of the datasets. By implementing the aforementioned procedures, we arrived at a dataset comprised 
of 836 examples of PNC concentrations characterised by a set of 14 features, which we used for the training and 
evaluation procedures.

UFP estimation from PNC.  To estimate UFP concentrations from PNC measurements, we analysed parti-
cle size distribution (PSD) data from the EBAS database. Figure 2 shows the distribution of the UFP fraction 
(particles <100 nm) relative to total PNC across all available measurements. The analysis reveals that UFPs 
dominate the total particle count in most locations, with a mean contribution of 91%. This aligns with studies 
in traffic-dominated urban areas where vehicular emissions (a primary source of UFPs) account for >90% of 
PNC12. However, regional studies highlight variability in UFP/PNC ratios due to differences in emission sources 
and atmospheric processes48. In urban and roadside environments, UFP fractions >90% are typical due to traf-
fic emissions, consistent with our mean estimates. In industrial and coastal areas, UFP fractions can be lower  
(70-85%) as particle emissions are dominated by industrial coarse-mode particles (e.g. metal processing) or 
marine aerosols (e.g. sea spray and ship emissions)49. Furthermore, in rural and suburban regions with strong 
new particle formation (NPF), UFP fractions are often higher (>95%)50.

To quantify uncertainties, we fitted a Beta distribution (shape parameters α = 18.75, β = 1.89) to the nor-
malised UFP fractions (Fig. 2). The derived mean (0.9082) and 95% coverage interval ([0.7866, 1.0299]) reflect 
variability in our dataset, they are consistent with the ranges reported in the literature for urban and highly 

Category Feature Name Resolution Reference

Human Activity

Population 1 km - Yearly 47

Build-up volume 1 km - 5 Years 31

Degree of urbanisation 1 km - 5 Years 33

Human settlement 1 km - 5 Years 34

Road network Line geometry - Static 46

Air Quality
NO2 concentration 1 km - Yearly 36

PM2.5 concentration 1 km - Yearly 37

Emissions

Black carbon 10 km - Monthly 39

Carbon dioxide 10 km - Monthly 39

Carbon monoxide 10 km - Monthly 39

Nitrogen oxides 10 km - Monthly 39

Meteorological

Temperature 25 km - Hourly 40

Boundary layer height 25 km - Hourly 40

Precipitation 25 km - Hourly 40

Table 2.  The input feature set used to train the ML models and during the inference procedures.
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populated regions, which is the primary focus of this study. Applications in industrial or coastal regions may 
require localised adjustments.

Methodology.  XGBoost.  In this study, we apply the Extreme Gradient Boosting (XGBoost) algorithm to 
estimate PNCs and UFP concentrations. The XGBoost algorithm was chosen for its computational efficiency, 
scalability, and recognized track record in performance and flexibility. It utilizes an ensemble tree-based learning 
scheme, which can effectively handle mixed data types, resist outliers, and model complex, non-linear relation-
ships without overfitting51–53.

The XGBoost model combines predictions from multiple decision trees, where each subsequent tree learns 
to correct the errors of its predecessors. This makes it particularly effective at capturing complex relationships 
between environmental factors and particle concentrations. The mathematical framework consists of three key 
components:

Prediction framework
The model is built stage-wise, with predictions given by: 

Fy f fx( ),
(4)i
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k i k
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 where �yi
 represents the predicted UFP concentration, K is the number of trees, and each tree fk maps environ-

mental inputs xi to concentration estimates.
Loss Function
The objective function balances model fit against complexity: 
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 where n is the number of examples in the dataset, l measures prediction accuracy using mean squared error, and 
Ω controls model complexity.

Regularization
To prevent overfitting, the regularization term is defined as: 
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Fig. 2  Beta distribution fit to the normalized UFP fractions relative to total PNC. The main plot shows the fitted 
Beta distribution, capturing the variability in UFP fractions. The inset displays the histogram of the percentage 
of particles under 100 nm with respect to the total PNC, with vertical dashed lines indicating the 60% (red) and 
90% (blue) percentiles.
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where T represents leaf count, wj are leaf weights (optimal prediction scores) calculated as = −
λ+

wj
G

H
j

j
, with 

Gj and Hj being the sum of gradients and Hessians respectively for instances in leaf j, and γ and λ control the 
regularization strength51.

Training and evaluation.  To determine the optimal set of parameters for the model, we divided the dataset into 
training and test sets, with a 90/10 split. This ensured that the test portion of the data was not utilized during the 
hyperparameter tuning process. Following this, the remaining data was further subdivided into a training and 
validation set, following a 90/10 split. We performed an exhaustive grid search in parameter space and assessed 
the performance of each model using the validation set. The parameter space explored in this study included 
the following ranges: the number of estimators varied between 30 and 250, while the number of parallel trees 
ranged from 1 to 10. The maximum depth of the trees was set between 3 and 15, and the learning rate spanned 
from 0.01 to 0.5. Additionally, the subsample ratio of the training instances was tested between 0.3 and 1, and the 
subsample ratio of columns used for constructing each tree also ranged from 0.3 to 1.

Once the optimal set of parameters was determined, we employed multiple validation strategies to thor-
oughly assess model performance and generalizability: 

•	 K-fold cross validation. The training dataset was randomly partitioned into K folds (10-fold in this case), 
where 90% of the data was used for training and 10% for evaluating the performance relative to unseen data.

•	 Spatial Leave-One-Out Cross Validation (LOOCV). Using the complete dataset to ensure comprehensive 
spatial coverage, the data was partitioned with respect to the location of the ground stations. In each iteration, 
the data from one ground station was left out to be used as a validation set and the model was trained on the 
rest of the data, to assess generalizability to unseen locations.

•	 Temporal LOOCV. Similarly, to evaluate temporal generalizability, we used the complete dataset partitioned 
by year. In each of the twenty cross-validation iterations (2000–2020), one year was left out and the model was 
trained using the rest of the data.

Finally, we evaluated the model’s performance on the held-out test set, which remained completely unused 
during both hyperparameter optimization and cross-validation procedures. This provided an unbiased assess-
ment of the model’s effectiveness using standard metrics including Mean Absolute Error (MAE), Mean Squared 
Error (MSE) and the coefficient of determination (R2). This iterative process allowed for the evaluation of the 
model’s performance across multiple validation sets, which enabled us to quantify the spatial and temporal 
generalizability of the model.

Conformal prediction with XGBoost.  To assess the prediction performance of the model, we used the confor-
mal prediction statistical framework to estimate the uncertainties of the model results. Conformal prediction 
provides a mechanism to generate statistically valid coverage intervals associated with the results of traditional 
ML models. Coverage intervals in this framework are distribution-agnostic, unlike similar methods like Natural 
Gradient Boosting and Gaussian processes, which assume data is normally distributed, an assumption that often 
fails in real world datasets54. We used the Model Agnostic Prediction Interval Estimator (MAPIE) library in 
Python 3.11 to implement conformal predictions with the XGBoost Regressor implementation of the xgboost 
library.

In general, conformal predictions operate by training the base model and calculating the coverage intervals 
using a holdout set of data. In this study, due to the limited number of long-term particle concentration data 
available, we used the Jackknife+ after Bootstrap method to enhance the robustness of our coverage intervals. 
This method involves the following steps: 

•	 Bootstrap Resampling. In the first step of the process, the training dataset is resampled multiple times (in 
this case 20), to create several bootstrap samples. The XGBoost regression model is trained separately on each 
of these samples.

•	 Leave-One-Out predictions. For each bootstrap sample, leave-one-out (LOO) predictions are made, where 
each instance in the sample is left out once during the prediction process.

•	 Nonconformity scores. The nonconformity of each prediction is assessed by comparing the LOO predictions 
to the actual values in terms of the mean-squared error. These scores measure how well the predictions con-
form to the observed data.

•	 Interval calculation. The distribution of the nonconformity scores across all boostrap samples is used to 
determine the bounds of the prediction intervals for new data points, based on the desired coverage intervals 
(in this case α = 0.05, or 95% coverage interval).

The jackknife+ after bootstrap approach guarantees a coverage level (the amount of observed data that lie 
within the predicted coverage intervals of the model) higher than 1–2α for a target coverage level of 1-α, without 
any a priori assumption on the distribution of the data, where α is the confidence interval55,56.

Explainability.  To gain insights into the underlying fundamental operation of the ML model, we utilised the 
SHAP (SHapley Additive exPlanations) method. Shapley values, based on a commonly used approach from 
cooperative game theory, assess the individual contribution of each input feature to a specific prediction, which 
allows us to identify and quantify the features that contribute the most to the model’s output57. The core concept 
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behind SHAP involves comparing the model prediction for a single data point to what it would have predicted 
under various hypothetical scenarios, where certain features are “masked out”. By aggregating these individ-
ual feature contributions, SHAP assigns an attribution value to each feature, indicating its impact on the final 
prediction58.

Mathematically, the model is retrained on all feature subsets S ⊆ F, where F is the entire feature set. The 
importance value is assigned to each feature that represents the effect on the model output including that fea-
ture. To compute this effect, two models are trained, one with the feature present (fS∪{i}) and one with the feature 
withheld (fS). The predictions from the two models are then compared for each input fS∪{i}(xS∪{i}) − fS(xS), where 
xS represents the values of the input features in the set S. As the effect of removing a feature is dependent on 
other features in the model, the preceding differences are computed for all permutations of the subset S ⊆ F\{i}. 
The Shapley values are subsequently computed as feature attributions and are a weighted average of all possible 
differences58,59: 
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A positive SHAP value suggests the feature improves the model prediction, while a negative value indicates 
the feature operates in the opposite direction. The magnitude of the value reflects the strength of the influence60.

We utilized the SHAP library in Python and the TreeExplainer method to generate beeswarm visualisations58. 
These plots served to elucidate the feature attributions in the model and their influence on individual predic-
tions, respectively. SHAP is a model-agnostic framework that computes feature attributions, explaining how 
each feature contributes to a specific prediction. In this case, the TreeExplainer method leverages tree-based ML 
models to calculate these attributions. It does so by creating a set of decision trees that mimic the behaviour of 
the original model. By analysing how each feature splits the data within these trees, the explainer can determine 
the contribution of each feature to the final prediction.

Data Record
The dataset consists of global maps depicting particle number concentration (PNC) for each year span-
ning 2010 to 2019 at a spatial resolution of 1 km. The full dataset is freely accessible in the Zenodo reposi-
tory under a Creative Commons Attribution 4.0 International (CC-BY 4.0) license at https://doi.org/10.5281/
zenodo.1483235161 It is distributed as ten separate NetCDF files, each corresponding to one calendar year within 
the covered period.

Each NetCDF file contains annual mean PNC values stored in a variable labeled PNC, 95% coverage inter-
vals indicating uncertainty in a variable labeled CI, and estimated ultrafine particle (UFP) concentrations in 
a variable labeled UFP. All these variables are defined on a uniform 1 km latitude-longitude grid covering the 
global land surface. The particle concentrations are expressed in units of particles per cubic centimeter (cm−3). 
Metadata embedded in each file describes the variable attributes, coordinate system, and provenance details to 
facilitate proper interpretation and reuse.

The naming convention for the files follows the pattern YYYY.nc, where YYYY is the year designation from 
2010 through 2019. The NetCDF format ensures compatibility with a wide range of geospatial and scientific com-
puting software tools. Spatial coordinates correspond to standard geographic latitude and longitude dimensions. 
No additional processing is required to access or utilize the data beyond typical NetCDF file handling.

Figure 3 shows an example illustration of the dataset structure for the year 2015, intended solely as a visuali-
zation of the data layout on the global grid.

Technical Validation
Model performance.  We evaluated the performance of the XGBoost model using multiple validation strat-
egies to ensure robust predictions of global PNC distributions. Through an exhaustive grid search, we identified 
the optimal hyperparameters for the model as follows: the number of estimators was set to 250, with a single 
parallel tree. The maximum tree depth was determined to be 10, and the learning rate (η) was 0.03. Additionally, 
the subsample ratio of training instances and the subsample ratio of columns were both set to 0.75. Figure 4 pre-
sents a sensitivity test, obtained from the results of the fitted models during the exhaustive search in parameter 
space for tuning the hyperparameters of the XGBoost model (evaluated on the held out portion of the data in 
each iteration).

Using these parameters, Fig. 5 demonstrates the model’s predictive capabilities. The traditional train-test split 
evaluation yields an R2 of 0.90 and a Mean Absolute Error of 1336 cm−3, while the 10-fold cross-validation shows 
slightly better performance with an R2 of 0.91 and MAE of 1025 cm−3.

To assess the model’s ability to predict PNCs at new locations and times, we performed spatial and temporal 
Leave-One-Out Cross-Validation (LOOCV) (Fig. 6). The spatial LOOCV, where entire measurement stations 
are held out, achieves an R2 of 0.77 and MAE of 2,839 cm−3. This lower performance reflects the inherent chal-
lenge of spatial extrapolation to completely new locations, particularly given our limited number of measure-
ment stations globally. The reduced spatial LOOCV performance of the model highlights a critical limitation 
in global PNC estimation, stemming from the uneven distribution of ground-based monitoring stations, espe-
cially in low- and middle-income regions such as Africa and South America. As shown in Fig. 1, the majority 
of ground station data currently originate from Europe and North America, resulting in data-sparse regions 
where extrapolation errors are more likely. This gap in monitoring coverage is a common challenge in global air 
pollution modelling, where data scarcity in developing regions introduces significant uncertainty in exposure 
assessments and model predictions62.

https://doi.org/10.1038/s41597-025-06055-9
https://doi.org/10.5281/zenodo.14832351
https://doi.org/10.5281/zenodo.14832351


1 0Scientific Data |         (2025) 12:1790  | https://doi.org/10.1038/s41597-025-06055-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

Sparse monitoring networks affect model generalizability and can lead to higher uncertainty and reduced 
predictive accuracy in regions without robust ground validation. Satellite-based approaches have made pro-
gress in addressing global gaps, but they also face limitations due to validation requirements and region-specific 
uncertainties63. It is therefore imperative to interpret predictions for data-poor regions with caution, as the 
model may not fully capture the local emission sources, meteorology, and atmospheric processes unique to these 
areas. To further quantify regional uncertainties, users are encouraged to refer to the model’s conformal predic-
tion coverage intervals, which adaptively widen in areas with reduced training data density.

In contrast, the temporal LOOCV, where entire years are held out, demonstrates good performance with 
an R2 of 0.87 and MAE of 1,740 cm−3. This stronger temporal performance suggests that our model captures 

Fig. 3  Global distribution of particle number concentration (PNC) at 1 km resolution. Center: Global map of 
predicted PNC values (cm−3). Top and bottom panels show zoomed-in views of selected cities around the world, 
highlighting the fine-scale spatial variations in PNC and their relationship with urban structure and emission 
sources.

Fig. 4  Sensitivity analysis results obtained by performing an exhaustive search in parameter space using the 
grid search method.
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year-to-year variations relatively more effectively than spatial patterns, likely due to the more consistent nature 
of temporal processes governing PNC distributions. The better temporal generalisation also indicates that our 
chosen features effectively represent the dynamic processes controlling particle concentrations, even when pre-
dicting for unseen years.

The percentage errors remain relatively consistent across validation methods, ranging from 23% for the test 
set to 32% for spatial LOOCV (Table 3). Notably, the spatial LOOCV exhibits a prediction minimum around 
1,000–1,500 cm−3, primarily due to the limited number of training stations in high-latitude regions, which were 
omitted due to being outside the latitudinal range of input variables.

These results represent the current state-of-the-art in global PNC prediction, considering the relative novelty 
of these measurements and the limited availability of long-term PNC monitoring data. Despite these limitations, 
the model demonstrates reliable extrapolation capabilities to new locations, providing a valuable tool for global 
PNC estimation.

The model’s performance varies significantly across different population density classifications, as shown in 
Table 4. In densely urbanised areas (>1,900 people/km2), where annual and global mean PNC values are highest 
at 14,992 cm−3, the absolute uncertainty is largest with a mean 95% coverage interval of 3715 ± 182 cm−3. Due to 
the high PNC values in these regions, this translates to a relatively small percentage error of 29 ± 2%. Suburban 
areas (250-800 people/km2) show intermediate values with a global mean PNC of 6,360 cm−3 and percentage error 
of 35 ± 3%. While rural areas (<250 people/km2) have the smallest absolute coverage interval (1852 ± 56 cm−3),  
they show the highest percentage error of 91 ± 3% related to their low mean PNC values (2,606 cm−3).

This high percentage error in rural areas is not critical from an exposure assessment perspective, as these 
regions combine low population density with relatively low PNC values and minimal health outcomes. However, 
episodic pollution events, such as agricultural burning in Punjab, India, or Imperial Valley, California, can gen-
erate acute PNC spikes (e.g. more than 20,000 cm−3 during post-harvest seasons) linked to respiratory hospital-
isations and developmental disorders in children64,65. Such events are underrepresented in long-term averages 
due to sparse monitoring and low baseline values, potentially biasing health studies that rely on annual means. 
Similarly, emerging rural pollution sources like biomass cook stoves in sub-Saharan Africa or mining activities 
in rural Mongolia may produce ultrafine particles (UFPs) that existing networks fail to capture, further compli-
cating exposure-risk assessments66,67.

This variability in model performance is particularly important when considering the steady increase in the 
percentage of people living in suburban and urban environments. Based on WorldPop population counts, the 

Fig. 5  Left: Predicted versus observed PNC values for the training (90%) and test (10%) datasets. Right: 
Predicted versus observed PNC values from 10-fold cross-validation, showing only out-of-fold (held-out) 
predictions for each fold.

Fig. 6  Model performance under different cross-validation schemes. Left: Predicted versus observed PNC 
values from spatial Leave-One-Out Cross-Validation, where measurement stations are held out. Right: 
Predicted versus observed PNC values from temporal Leave-One-Out Cross-Validation, where entire years are 
held out.
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proportion of the global population residing in these areas has been steadily increasing from  ~67% in 2000 
to  ~73% in 2020, while the total population has increased from  ~6 billion to  ~8 billion people in the same 
time period47. This trend highlights the growing significance of accurately modelling air pollution exposure in 
suburban and urban regions, where both population density and PNC/UFP levels are comparatively high. The 
relatively low percentage error in urban areas enables reliable exposure assessments for a large and increasing 
share of the global population. Conversely, while rural areas exhibit higher percentage errors, their low popula-
tion densities and lower PNC/UFP values mitigate the criticality of these uncertainties from an exposure assess-
ment perspective. Nevertheless, additional measurement datasets in rural settings will be needed to improve the 
model performance across different environmental conditions.

Conformal prediction55 provides reliable uncertainty quantification even with the limited spatial coverage 
of the global measurement network. Unlike traditional methods that rely on distributional assumptions, con-
formal prediction offers distribution-free prediction intervals by leveraging the exchangeability of training and 
test data. While exchangeability may theoretically be violated in real-world settings-for example, due to gradual 
temporal trends in emissions or shifts in monitoring networks, such risks are mitigated in our analysis. First, the 
use of yearly-averaged data reduces sensitivity to short-term fluctuations, thereby weakening the impact of grad-
ual temporal trends on exchangeability. Second, empirical validation demonstrated that uncertainty intervals 
maintained  ~95% coverage across held-out test sets spanning diverse regions and years, with no significant deg-
radation in performance. Notably, intervals adapted to sparse measurement regimes by widening appropriately 
to reflect increased uncertainty, suggesting robustness to mild violations of exchangeability.

Although abrupt temporal shifts (e.g., rapid emission reductions following policy changes) could exacer-
bate exchangeability violations, such effects were not observed in our experiments. The framework’s practical 
robustness is further supported by strong temporal cross-validation results (R2 = 0.87), aligning with findings 
in68, where conformal prediction achieved near-target coverage despite mild exchangeability violations in envi-
ronmental applications.

Explainability.  To understand how the features used in our machine learning model influence the model’s 
predictions, we employed the SHAP method. SHAP quantifies each feature’s contribution to individual predic-
tions while accounting for feature interactions and providing insights into both the relative importance of features 
and how their values affect the model’s output. Figure 7 presents a beeswarm plot where features are ordered by 
their absolute impact on model predictions. Each point represents a single prediction, with its horizontal position 
showing the SHAP value (negative values indicate weakening of predictions, positive values enhance them) and 
its colour indicating the feature value (blue for low, red for high). The maximum SHAP value obtainable by a sin-
gle feature would be one since the model output is scaled to the 0-1 range. For example, a SHAP value of 0.2 for 
built-up volume indicates that this feature can contribute up to approximately 9,000 cm−3 (20% of the maximum 
range of approximately 45,000 cm−3) to the final PNC prediction when its value is high.

Built-up volume emerges as the most important feature, followed by NO2 concentrations, black carbon 
emissions and PM2.5 concentrations, with maximum SHAP values up to approximately 0.2. The strong positive 
correlation between high built-up volume, NO2 and black carbon emissions with PNC aligns well with our 
understanding of particulate pollution in urban environments20.

Interestingly, PM2.5 shows a slight negative impact (up to around −0.025) even at high feature values, sug-
gesting that processes governing particle number concentrations can differ from those controlling particle mass. 
PNCs are dominated by UFPs, which contribute significantly in terms of number but very little to mass con-
centration. In a study across multiple cities, de Jesus et al. have shown that PNC and PM2.5 measurements are 
not representative of each other48. The negative correlation can be attributed to differences in the formation 

Method MAE MSE R2 Perc. Error

10% Test set 1,336 2,644 0.90 23%

10-fold CV 1,025 1,541 0.91 24%

Spatial LOOCV 2,839 9,427 0.77 32%

Temporal LOOCV 1,740 6,912 0.87 26%

Table 3.  Model performance metrics for different validation strategies. MAE and MSE are given in cm−3. 
The percentage error represents the mean relative error across all predictions. Results show performance for: 
traditional test set evaluation (10% of data), 10-fold cross-validation, spatial Leave-One-Out Cross-Validation 
(LOOCV) where individual stations are held out, and temporal LOOCV where entire years are held out.

Classification Population limit (km−2) Mean PNC (cm−3) Mean 95% CI Mean Percentage Error

Rural 250 2,606 1,852 ± 56 91 ± 3

Suburban 800 6,360 2,165 ± 72 35 ± 3

Urban 1,900 14,992 3,715 ± 182 29 ± 2

Table 4.  Model predictions and uncertainty metrics across different population density classifications. Areas 
are classified as rural (<250 people/km2), suburban (250–800 people/km2), or urban (>800 people/km2). For 
each class, the table shows mean PNC values, 95% coverage intervals, and percentage errors (presented as 
mean  ± standard error).
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processes and sources of the two pollutants. Apart from the differences in formation processes, PM2.5 and PNCs 
can also have different emission sources, particularly in urban environments48. Furthermore, the negative rela-
tionship indicates that at high particulate mass concentration, driven by large particles, the number concentra-
tion of small particles diminish due to coagulation and condensation (sink) processes.

Meteorological features are found in the middle range of the SHAP order. BLH appears as the most influ-
ential of the three, followed by temperature and precipitation. BLH had an inverse relationship with the model 
output, as the SHAP values were positive at low values. Kesti et al. have shown that when the BLH is low, par-
ticles are confined to a shallow mixing volume near the surface, thus, contributing to increased concentra-
tions69. Moreover, a shallow boundary layer limits vertical mixing, trapping pollutants near the surface, and, 
conversely when BLH is high, particles disperse throughout a larger air volume, effectively reducing the surface 
concentrations43,70. Precipitation shows a similar tendency, as it affects PNC through wet deposition processes. 
Below cloud-scavenging, where falling rain droplets collect particles and remove them from the atmosphere and 
in-cloud scavenging, where particles and precursors gases are incorporated into cloud droplets and removed 
during subsequent precipitation events44,71. It was also shown that particle removal through wet-deposition is 

Fig. 7  Feature importance analysis using SHAP values. The plot shows the impact of each feature on model 
predictions, where each point represents a single prediction. Features are ordered by their absolute SHAP 
values, with higher values indicating a stronger influence on PNC predictions. Colours represent the feature 
value (blue for low, red for high).
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less important for long-term average concentrations than the mixing effects of the boundary layer71, in line with 
our findings in this study.

The last of the meteorological features indicates a mix of influences towards the model output, as it contrib-
utes both negatively and positively across its range. Low temperatures can enhance PNC values, as they promote 
condensation of semi-volatile compounds, reducing their saturation vapor pressure, while at the same time 
their evaporation is reduced.72. Conversely, during periods with relatively high temperatures and solar radiation 
intensity, photochemical oxidation of volatile species into less volatile ones promotes new particle formation 
and PNCs20. The relationship between temperature and PNC is complex and is often intertwined with other 
meteorological parameters, such as BLH and precipitation. These complex interactions can lead to different 
PNC responses depending on the local environment and emission sources73, which is reflected in the analysis 
of the SHAP values.

The relatively low importance of the road network feature (SHAP values below 0.025) seems counter-intuitive 
given that traffic is a major source of particles, especially in urban environments. However, this has several rea-
sons. First, the impact of road traffic is already captured by other features in the model, particularly NO2 con-
centrations and black carbon emissions, both commonly used as proxies for traffic-related sources74,75. Second, 
the static nature of this feature may not fully capture the dynamic nature of traffic emissions, which vary signif-
icantly with time76.

Lastly, the weaker influence of static features like the road network compared to dynamic variables supports 
recent findings that emphasise the importance of temporal variations in emission patterns over fixed geographi-
cal features75. The weak SHAP influence of road networks contrasts with established traffic-UFP correlations but 
aligns with limitations in our modelling framework. First, collinearity between road density and traffic-related 
pollutants (e.g., NO2, BC) likely obscures the unique contribution of road networks, as these covariates act as 
proxies for traffic sources. For example, LUR models often report masking effects when multiple traffic indica-
tors are included, with NO2 and BC absorbing explanatory power that might otherwise be attributed to road 
features77. Second, static road data inadequately capture temporal traffic dynamics, such as rush-hour conges-
tion or seasonal freight activity, which drive short-term UFP spikes. Studies highlight that static road metrics 
(e.g., annual road density) fail to reflect real-time traffic volume or fleet composition (e.g., diesel vs. electric 
vehicles), weakening observed correlations78. Additionally, low spatial variability in road density across regions 
(e.g., uniform distributions in suburban/rural grids) reduces discriminatory power, a common issue in LUR 
models relying on coarse road datasets79.

To further investigate the marginal effect of each feature on model predictions and to complement the SHAP 
analysis, we provide partial dependence plots (PDPs) for all predictors (Fig. 8). PDPs illustrate the relationship 
between individual predictors and the predicted PNC, marginalizing over the distribution of other variables and 
thereby enabling a more direct interpretation of the model’s dependence structure80. The PDP for the road net-
work variable supports its relatively weak effect on model output, consistent with the low SHAP values observed 
in the beeswarm plot. In contrast, features such as NO2, built-up volume and BC clearly exhibit stronger, mono-
tonic, or non-linear influences on PNC predictions, in line with both domain knowledge and their high SHAP 
importances. This further supports our interpretation that multicollinearity, especially between road network, 
NO2, and BC (all proxies for traffic emissions), dilutes the apparent unique contribution of the road feature in 
the presence of more temporally-resolved variables.

Sources of uncertainty.  In this study we applied a novel data-driven methodology to predict PNC on a 
global scale at high spatial resolution. Our predictions are, however, subject to multiple sources of uncertainty that 
need to be carefully considered. These uncertainties can be broadly categorised into data-related, model-related, 
and prediction-uncertainties.

Data uncertainties.  The primary source of data uncertainty includes the limited spatial coverage of ground 
station measurements, particularly in regions with significant pollution sources. The sparse distribution of PNC 
monitoring stations, especially in low- and middle-income countries with growing air pollution from industrial 
activity and urbanization, introduces sampling uncertainty. This limitation is particularly notable in regions 
like Africa, South America and parts of Asia, where data availability remains sparce despite their significant 
contribution to global emissions. Most of our training data originates in Europe and North America, with only 
a limited number of cities represented in Asia. Other regions, especially in the Southern Hemisphere remain 
under-represented in our training dataset.

While we do not expect this to be a major limitation for urban locations—since the PNC and UFP data 
and features included in our analysis span a wide range of environmental conditions, including diverse cli-
mates, emission densities, land use types, and population densities (as quantified in the partial dependence 
plots (Fig. 8), where the x-axis represents the central 95% interval of each variable’s observed range), it will 
nevertheless be important to further test the model’s performance as new measurement data become available 
in currently underrepresented regions. Additionally, even though spatial cross-validation partially addresses 
the issue of spatial bias, it cannot fully mitigate the risk of extrapolation errors in regions with sparse or absent 
ground measurements. The predominance of European and North American data in our training set means 
that model predictions for under-represented regions should be interpreted with caution, as the model may 
not fully reflect the local emission profiles or environmental conditions unique to such areas. This limitation 
highlights the urgency for expanded monitoring networks, targeted data collection in under-sampled regions 
and open-access sharing of such data to enhance model generalizability and reduce uncertainty in global expo-
sure assessments81.
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Model-related uncertainties.  The XGBoost model provides reliable predictions through its ensemble struc-
ture and regularization mechanisms. Its demonstrated robustness in cross-validation tests—particularly in 
data-scarce regions—reflects an efficient balance between model complexity and generalizability. Spatial 
leave-one-out cross-validation (LOOCV) results show the framework adapts to environmental heterogeneity 
by widening prediction intervals in regions with limited training data, a critical feature for global-scale applica-
tions82. XGBoost’s performance on modestly sized datasets aligns well with the available ground observations, as 
its gradient-boosted trees capture nonlinear relationships without overfitting to sparse or noisy measurements83.

While the spatial LOOCV R2 of 0.77 indicates a reduction in model performance when extrapolating to 
regions outside of the model’s training set, this level of accuracy is consistent with previously published exposure 
assessment models used in epidemiological research. For example, land-use regression (LUR) models applied 
in multi-city studies often report spatial LOOCV R2 values in the range of 0.5 to 0.8, yet have been successfully 
used to detect significant health impacts, including respiratory and cardiovascular outcomes, in both urban and 
rural settings77,79. Similarly, recent hybrid models for PM2.5 and NO2 have achieved comparable R2 values in 
data-scarce regions, supporting their use in global and regional health burden assessments63,84.

Nevertheless, the challenge of extrapolating to regions with limited or no ground-based monitoring remains 
a key limitation for all global-scale models. Approaches such as hybrid modelling84, which combine machine 
learning with process-based chemical transport models, and the use of satellite-derived proxies and low-cost 
sensor data63, can improve predictions in under-monitored areas. Our model’s integration within a conformal 
prediction framework further allows for the detection and flagging of regions with expanded coverage intervals, 
where the model underperforms and where exposure estimates should be interpreted with caution.

Prediction Uncertainties.  Prediction uncertainties arise from both aleatory uncertainty (inherent variability 
in the system) and epistemic uncertainty (lack of knowledge). These uncertainties are most pronounced when 
predicting PNCs in regions with environmental conditions significantly different from the training data, i.e., 
when extrapolating to areas with limited ground measurements, and when dealing with temporal variations not 
well represented in the training dataset.

The conformal prediction framework we employed provides uncertainty quantification that accounts for 
these various causes, offering reliable coverage intervals without assuming a normal distribution of the data. The 
framework’s coverage ensures our uncertainty estimates remain valid even when the model accounts for new 
environmental conditions.

The varying performance across different population density classifications reflects how these uncertainties 
manifest differently in various environments. The model performance varies across different environments, 

Fig. 8  Partial dependence plots (PDPs) for the set of input variables used in the PNC prediction model. The 
PDPs show the marginal effect of each feature on predicted PNC while holding the rest of the features at their 
mean value.
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as evidenced by the spatial LOOCV results (R2 = 0.77), indicating higher uncertainty in regions with limited 
training data compared to random cross-validation (R2 = 0.91). While urban areas show the lowest relative 
uncertainties, likely due to better representation in the training data, rural areas exhibit higher percentage errors, 
though this is less critical for exposure assessments given both the lower population density and PNC values in 
these regions.

Given these limitations, there is a clear need to expand the spatial and temporal coverage of PNC and UFP 
measurements across geographical regions and ensure their availability through open-access data repositories. 
This will enable the development of more comprehensive models and improve the reliability of predictions, 
particularly in currently under-monitored regions.

User Guide.  The dataset is provided in CF conventions compliant NetCDF format (.nc), a widely used, 
self-describing format for multidimensional datasets. Each NetCDF file contains annual mean PNC values, 95% 
coverage intervals, and approximated UFP values for 2010-2019, organized by latitude and longitude. Metadata 
describing variables, units, and conventions are included in the file and can be viewed with any of the recom-
mended tools. Several free tools can be used for accessing NetCDF datasets, such as the xarray library in Python, 
the Panoply visualisation tool, QGIS, and the ncdf4 and raster libraries in R.

Data availability
The global annual particle number concentration (PNC) and ultrafine particle (UFP) dataset generated in 
this study is available in open access from Zenodo at https://doi.org/10.5281/zenodo.14832351. The data are 
distributed in NetCDF format, with separate files for each year from 2010 to 2019. Each file contains gridded 
annual mean PNC values (PNC variable), estimated UFP values (UFP variable), and 95% coverage intervals (CI 
variable), indexed by latitude and longitude. The dataset is licensed under the Creative Commons Attribution 4.0 
International License (CC BY 4.0).

Code availability
The code used to produce the datasets presented in this study is freely and openly under an MIT license at https://
github.com/pantelisgeor/Ultrafine-Particles and https://doi.org/10.5281/zenodo.1483235161.
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