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Abstract

Noncommunicable diseases such as cardiovascular disease (CVD) are becoming more prevalent in urbanized and
industrialized societies. Classic risk factors such as hypertension are reinforced by behavioral factors such as smoking
and diet, and environmental risk factors such as transportation noise and air pollution. Animal studies reveal that noise
causes annoyance and sleep disturbance, promoting stress hormone release. Air pollution damages the lung, causing
inflammation and oxidative stress that can spread to the circulation and remote organs. Both noise and air pollution
converge at the vascular level, causing dysfunction in vascular signaling and atherosclerotic plaque formation. The
complex interplay between environmental risk factors and CVD can lead to synergistic health impacts. The present
review focusses on the impact of noise and air pollution on the brain–heart axis. Noise causes its primary health effects
on the brain by activating the sympathetic nervous system and the hypothalamic–pituitary–adrenal axis and thereby
causes neuroinflammation, cerebral oxidative stress and via stress hormone signaling, and also induces cardiovascular
damage. Air pollution activates the stress response as a homeostatic stressor. Uptake of (nano)particles into the brain
can proceed by migration along the olfactory nerve. Particles in the brain can cause stress responses similar to
neuroinflammation and cerebral oxidative stress due to noise. Understanding the negative effects of noise and air
pollution on the cardiovascular system could help protect patients with preexisting CVD.
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Introduction

Air pollution

Air pollution is a term widely used to describe all
components of the atmosphere that are toxic to humans,
and that encompasses both gaseous components such as
ozone, nitric oxides and sulfur oxides, and solid elements,
named particulate matter (PM) (Agency 2024a). Modern
air pollution research started after considerable smog and
ozone problems in Los Angeles (California, USA) in the
1950s (Haagen-Smit 1950). A large body of research now

describes epidemiological associations of air pollution
exposure with various diseases and mechanistic
pathways of how air pollution components exert
pathophysiological effects. Recent estimates of total
global mortality attributed to air pollution range from
6.7 million (WHO (Organisation 2024)), over 8.3 million
(Lelieveld et al. 2023), and even up to 10.2 million (Vohra
et al. 2021) yearly deaths, associating air pollution with
almost 20% of annual global deaths. PM has recently
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gained more attention due to its recognition as the more
detrimental part of air pollution, contributing significantly
to the total disease burden and premature deaths (Munzel
et al. 2018a). The most recent Global Burden of Disease
(GBD) study showed that particulate matter pollution was
the most prominent risk factor by attributable DALYs
(disability-adjusted life years) in 2021 (Brauer et al.
2024). Interestingly, previous GBD studies have
separated PM pollution into household and ambient,
ranking them lower, but combined they still represented
the number one risk factor for attributable DALYs, even in
1990 (GBD 2019 Diseases & Injuries Collaborators 2020,
Brauer et al. 2024). PM is usually classified by its size into
PM10 (<10 µm), PM2.5 (<2.5 µm) or ultrafine PM (UFPM,
<0.1 μm), as its chemical complexity makes it hard to
classify by any other parameter. Recent studies have
demonstrated that PM size is connected to their
detrimental effects, with smaller PM causing more
damage due to its ability to penetrate deeper into the
lung and translocate into circulation (Pinkerton et al.
2000, Kreyling et al. 2006, Kuntic et al. 2024b).

Noise

Due to high urbanization in themodernworld, large cities
that are often prominent sources of air pollution also
have high noise levels. Noise is, therefore, primarily
inseparable from air pollution and was not extensively
studied as a risk factor for human health until recently
(Munzel et al. 2021). The close co-localization of noise and
air pollution often leads epidemiological studies to
overestimate the effects of individual risk factors when
not adequately normalized, especially since noise and air
pollution were shown to be independent (Chang et al.
2015, Heritier et al. 2019). Today, transportation noise is
prominent in the total noise burden, especially in highly
urbanized areas (Munzel et al. 2020). Transportation
noise was previously linked with many diseases,
including cardiovascular, neurodegenerative and
neuropsychiatric (Hahad et al. 2022). Noise is usually
measured as sound pressure level expressed in decibels
(dB). Most of the early studies on noise were based on
occupational noise, with high sound pressure levels that
can cause inner ear damage and loss of hearing (Lie et al.
2016). Most of the recent noise research focuses on lower
sound pressure levels, which do not cause direct damage
or hearing loss but interrupt everyday life due to
annoyance, increase in stress and sleep disturbance
(Munzel et al. 2014). Train and aircraft noise are
disturbing due to their intermittent nature and high
peak sound pressure levels (Munzel et al. 2018b).
Current guidelines by the WHO state that noise should
not exceed 54 dB Lden (during the day) and 45 dB Lnight

(during the night), although different sources of noise
have even stricter recommendations; for example,
aircraft noise should not exceed 45 dB Lden and 40 dB
Lnight (Organization 2022). The European Environment
Agency suggests that at least 20% of urban population in

Europe is exposed to noise exceeding healthy levels, and
in many cities, this number can even reach 50% (Agency
2024b). Although guidelines are in place and are based on
scientific evidence of the detrimental effects of noise,
adherence is still lacking.

Brain–heart axis

Traditionally, the brain–heart axis mainly was
understood as the autonomic regulation of the heart
and the vasculature (Simats et al. 2024). Today, we
know that the brain–heart axis has many distinct
components, some of them neuronal and some
hormonal, but different biological pathways can also
carry information from the brain to the heart and vice
versa. An overview of the brain–heart axis and its
components is shown in Fig. 1. The brain–heart axis
has two pathway orientations, one from the brain
toward the heart (efferent) and one from the heart
toward the brain (afferent). The efferent pathway
begins with the medial prefrontal and insular cortex,
which is responsible for high-level functions. The
amygdala and the hippocampus are functionally
connected to the prefrontal cortex and are responsible
for regulating and processing emotional stress.
The paraventricular nucleus (PVN) in the
hypothalamus is mainly accountable for hormonal
stress response as it controls the activation of the
hypothalamic–pituitary–adrenal (HPA) axis. In the
brainstem, the rostral ventrolateral medulla (RVLM)
increases blood pressure by activating the sympathetic
nervous system (SNS). The dorsal vagal nucleus decreases
blood pressure by activating the parasympathetic
nervous system. The afferent pathway starts with
chemoreceptors and baroreceptors, which monitor the
blood flow and composition. The signals travel through
the brain stem to reach the thalamus, which further
relays the signal to the insular cortex, which then
processes the hemodynamic information (Pereira et al.
2013, Hu et al. 2023).

Stress response pathway
The stress response in humans has the function of
maintaining homeostasis in the presence of either real
or perceived danger. It includes the activation of the HPA
axis, and the SNS and is associated with the circadian
clock regulation (Russell & Lightman 2019). The stress
response starts from the hypothalamus, in the
hypothalamic PVN, where corticotropin-releasing
hormone (CRH) is secreted. CRH reaches the pituitary
gland, where it stimulates the release of
adrenocorticotrophic hormone (ACTH), which, through
systemic circulation, reaches the cortex of the adrenal
glands.When stimulated by ACTH, adrenal glands release
glucocorticoids, mainly cortisol, into systemic circulation
(Kuntic et al. 2024a). Glucocorticoids are very important
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hormones as they regulate a large number of genes
through glucocorticoid receptor binding and further
activation of transcription by recognition of
glucocorticoid-response elements on the promoter

region of target genes (Charmandari et al. 2005).
Glucocorticoid-activated genes regulate the loss of
homeostasis through increased catabolism, lipogenesis,
immunosuppression and reduction in reproductive drive

Figure 1

Brain–heart axis and the involved neural pathways. The top-to-bottom (efferent) pathways involve the medial prefrontal cortex and insular cortex, which
through the amygdala and the hypothalamus result in the activation of the HPA axis and both the sympathetic and parasympathetic neurons. The
bottom-to-top (afferent) pathways start with the input from the chemoreceptors and baroreceptors passing through the thalamus and finishing in the
insular cortex. ACTH, adrenocorticotropic hormone; HPA, hypothalamic–pituitary–adrenal. The figure was reused from Hu et al. (2023) with permission.

A Valar et al. Redox Experimental Medicine (2025) 2025 e250004
https://doi.org/10.1530/REM-25-0004

https://doi.org/10.1530/REM-25-0004


(Charmandari et al. 2005, Baschant & Tuckermann 2010).
Although glucocorticoids have an anti-inflammatory
effect, chronic exposure to high levels of
glucocorticoids can lead to the downregulation of their
receptors in immune cells, leading to ‘cortisol resistance’,
which promotes inflammation (Vashist & Schneider
2014). Interestingly, there is a difference in how
homeostatic and psychological stressors activate the
HPA axis. Homeostatic, or reactive, stressors, such as
systemic inflammation, hypoglycemia and hypoxia,
feed directly to the PVN by monosynaptic relays from
sensory organs (Herman et al. 2003).

On the other hand, psychological or anticipatory
stressors, such as those coming from sensory organs
(sight, smell, sound and touch) are subjected to initial
activation of the upper limbic structures with the PVN
through intermediary nuclei. This allows the organism to
gauge the level of severity before activating the HPA axis
by having both excitatory and inhibitory neuronal
information (Herman et al. 2003, Radley & Sawchenko
2011). Both homeostatic and psychological stressors seem
to produce the same temporal response, pointing to the
importance of the stressor intensity, not the stressor
modality (Furay et al. 2008).

SNS activation stimulates adrenal medulla and releases
catecholamines (adrenaline, noradrenaline, and
dopamine) (Pongratz & Straub 2014). Catecholamines,
as part of the stress response, bind to the α- and
β-adrenergic receptors on the endothelial cells of the
vasculature or the cardiomyocytes, where they control
the blood pressure and heart rate. Chronic
overstimulation of the β receptor can lead to cardiac
hypertrophy and fibrosis, mediated through
angiotensin 2, endothelin 1 and interleukin 6 release by
fibroblast and cardiomyocyte hypertrophy (Reed et al.
2014). Catecholamines can have both anti- or pro-
inflammatory effects in the immune cells. β-adrenergic
receptor has low affinity for catecholamines and
produces an anti-inflammatory effect in the presence of
large catecholamine concentrations, and α-adrenergic
receptor has high affinity for catecholamines and
produces a pro-inflammatory effect (mediated by
tumor necrosis factor (TNF)) in the presence of low
catecholamine concentrations (Pongratz & Straub
2014). Inflammation was previously shown to be
associated with perceived stress in humans (Tawakol
et al. 2017), reinforcing connection within the stress
response pathway.

The stress response pathway is both susceptible to and a
source of oxidative stress. Both the activated SNS andHPA
also lead to the activation of the
renin–angiotensin–aldosterone system (RAAS), which
leads to the production of angiotensin-II, a potent
vasoconstrictor (Correa et al. 2022). In addition to its
vasoconstrictive properties, angiotensin-II can also
activate the NADPH oxidase via protein kinase C
inducing oxidative stress through superoxide

production (Daiber et al. 2020). Oxidative stress is
detrimental to the cardiovascular system as many
important signaling pathways and functions in the
cardiovascular system are redox sensitive. Nitric oxide
(•NO) signaling, which is of great importance for the
maintenance of vascular tone, is sensitive to oxidative
stress as superoxide radical can directly scavenge •NO to
create peroxynitrite (ONOO�). Other oxidative processes
can also impair •NO signaling, such as oxidation of the
endothelial •NO synthase (eNOS) cofactor
tetrahydrobiopterin (BH4) to the trihydrobiopterin
(•BH3) radical by ONOO� or eNOS S-glutathionylation,
both of which lead to eNOS uncoupling (Frenis et al.
2021c). Increase in catecholamine production could
lead to increased monoamine oxidase activity and
production of H2O2 as norepinephrine has been shown
to activate the PVN of obese rats exposed to PM2.5

(Balasubramanian et al. 2013). Increased levels of
circulating catecholamines can be oxidized to
aminochromes, which are highly reactive quinone
compounds that form protein adducts on the cysteine,
lysine, and tyrosine residues, causing protein damage and
functional alteration in the heart (Dhalla et al. 2010).

Evidence from human studies

Effects of air pollution on the stress
response pathway

Air pollution acts as a homeostatic stressor as it mostly
causes oxidative stress and systemic inflammation, which
disturb the homeostasis and elicit a stress response.
Translocation of PM from the lung into circulation
could also be a signal for homeostatic disturbance,
producing direct damage or gaseous constituents of air
pollution can act through chemoreceptors sending
information to the central nervous system to react via
the autonomic nervous system (Perez et al. 2015).
Although the available literature is lacking direct
measurements of either catecholamines or
glucocorticoids in association with air pollution
exposure, several epidemiological studies have shown
positive correlations. A study based on the Multi-Ethnic
Study of Atherosclerosis (MESA) cohort showed that there
is a positive association between urinary epinephrin
levels and two air pollution components, NOx and
PM2.5 (Hajat et al. 2019a). The same MESA cohort also
produced an association between •NO2 and saliva cortisol
levels, pointing to the impact of combustion engine-
derived air pollution on the stress response pathway
(Hajat et al. 2019b). Similar results were obtained in a
study on pregnant women, where the amount of cortisol
in the hair was positively associated with the
concentration of •NO2 and black carbon (representing
PM) (Verheyen et al. 2021b). The same group found
positive association between hair cortisol levels and
PM10 and •NO2 exposure in a cohort of adolescent boys,
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but not girls (Verheyen et al. 2021a). Importantly, the
study also showed that the total leukocyte count was
positively associated with all measured air pollution
constituents, PM2.5, PM10,

•NO2 and black carbon,
pointing to the activation of the stress response
through systemic inflammation. Another study showed
that the increase in saliva cortisol levels and levels of
TNF-α promoter methylation are both positively
associated with PM10 exposure (Dolcini et al. 2024). An
interventional study showed that exposure to ultrafine
PM and ozone decreases peripheral norepinephrine

clearance rather than increasing the SNS activity
(Heusser et al. 2019). Other interventional studies also
show increased autonomic activity, but do not report
stress hormone concentrations (Brook et al. 2014).
Reduction in clearance of catecholamines and generally
mixed results in the association between air pollution
exposure and catecholamines levels possibly imply that
air pollution is not a potent stress response activator in
acute or low dose exposure conditions. A summary of the
mechanistic pathways of air pollution-induced stress
response is shown in Fig. 2.

Figure 2

Air pollution induced activation of the stress response. Different components of air pollution enter through the lung, where they activate the resident
macrophages, causing local and systemic inflammatory response. PM can also translocate into the circulation, causing direct vascular damage. This
homeostatic response signals to the stress response via the activation of the HPA axis and the SNS, resulting in the release of glucocorticoids and
catecholamines, which affect the vagal tone and heart rate. PM10/2.5, particulate matter of diameter <10/2.5 μm; •NO2, nitrogen dioxide; O3, ozone; HPA,
hypothalamic–pituitary–adrenal; SNS, sympathetic nervous system; PVN, paraventricular nucleus; CRH, corticotropin-releasing hormone; TNF-α, tumor
necrosis factor alpha. Created with BioRender.com.
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Effects of noise on the stress response pathway

As traffic noise is a major psychological stressor, many
studies in humans have looked for the association between
noise exposure and stress hormone release, although the
results remain inconclusive. A study done on the HYENA
(Hypertension and Exposure to Noise near Airports)
cohort showed significant association between saliva
cortisol and levels of aircraft noise exposure (Selander
et al. 2009). Interestingly, the association was significant
only in women but not in men. Another study measuring
saliva cortisol suggested that women have higher cortisol
levels than men, but no significant association could be
found between road traffic noise levels and cortisol
secretion (Wallas et al. 2018). Interestingly, the authors
note that the levels of annoyance bynoise, determinedby a
questionnaire, correlatedwith the cortisol levels, indicated
that the perceived stress coming from noise is the main
driver of the HPA axis activation and not the noise itself. In
addition, cortisol is an importantmediator of the circadian
rhythm, and the lack of association between noise and
cortisol levels might arise due to the shift in the cortisol
release time, masking the HPA axis activation (Lefevre
et al. 2017). Activation of the SNS was also observed in
epidemiological studies as noradrenaline levels in urine
were shown to be associatedwith noise exposure, but only
in the instances where mitigation strategies, such as
closing the window, were not available (Babisch et al.
2001). An important study correlated transportation
noise to arterial inflammation and major adverse
cardiovascular events by showing the connection to the
heightened amygdala activity (Osborne et al. 2020). This
landmark study showed both the mechanism of noise
induced stress, by showing amygdala activation, and the
consequences of noise induced stress, by showing a
pathological mechanism, arterial inflammation, resulting
in cardiovascular disease. Results from the study are
shown in Fig. 3. Several interventional studies have also
looked at the direct effects of traffic noise on stress
hormone release. In an aircraft noise exposure study, 75
subjects were exposed during nighttime, resulting in the
reduction of flow mediated dilation, a marker of
endothelial dysfunction, and increase in morning levels
of adrenaline (Schmidt et al. 2013). Similar observations
were made by the same group in the train noise exposure
study (Herzog et al. 2019), pointing to the activation of the
SNS. Both of these studies on aircraft and train noise also
showed that administration of vitamin C prevented the
negative effects of noise, showing the involvement of
oxidative stress.

Evidence from animal studies

Effects of air pollution on the stress
response pathway

Long-term inhalation of airborne pollutants, particularly
PM2.5, leads to particle accumulation in the deeper lung

area, where resident alveolar macrophages phagocytose
them (Lehnert 1992) and release cytokines such as IL-6,
IL-1β and TNF-α into the systemic circulation, triggering
the recruitment of circulating myeloid cells and
exacerbating tissue damage (Caceres et al. 2024). These
cytokines also activate HPA axis to maintain homeostasis
under stress and injury (Chen et al. 2017). Multiple in vivo
studies focusing on PM-induced neuroinflammation
collectively report an increase in pro- and a decrease
in anti-inflammatory markers in the brain (Campbell
et al. 2005, Liu et al. 2020). Mice exposed to ultrafine
PM also showed increased pro-inflammatory markers
in the whole brain compared to clean air counterparts
(Campbell et al. 2005). Another study on rats exposed to
PM2.5 evaluated the mRNA expression of pro- and anti-
inflammatory markers in different brain regions
between sexes, where females have shown more
profound neuroinflammation (Liu et al. 2020).

An in vivo study on rats sub-chronically exposed to ozone
and/or urban PM observed elevated mRNA levels of
inflammatory and antioxidant markers in the lungs
and in the Cyp1a1 marker indicative of cardiotoxicity
(Thomson et al. 2013). The plasma levels of ACTH and
corticosterone were increased immediately after
exposure and were fully recovered to the control levels
after 24 h in both particulate matter and ozone exposed

Figure 3

Relationship between noise and vascular inflammation. Positron emission
tomography scan of the amygdalar and arterial 18F-FDG uptake,
pointing to the noise stress response directly stimulating vascular
inflammation. MACE, major adverse cardiovascular events. The figure
was reused from Osborne et al. (2020) with permission.
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groups. In another study, the rats were exposed to
concentrated air particles (CAPs) containing PM2.5 for
8 h with or without ovalbumin-induced asthma model
both 2 weeks and 1 h before inhalation exposure (Sirivelu
et al. 2006). The authors observed an increase of
norepinephrine levels in the PVN, indicating the
activation of the HPA axis, as PVN accounts for the
highest release of CRH. However, dopamine was
significantly elevated in the medial preoptic area in the
sensitized and inhalation groups only. Corticosterone
levels in serum were significantly elevated in all
exposed groups even though the plasma was collected
24 h after the 8 h exposure to CAPs. Mice exposed to
carbon nanotubes, a surrogate for ultrafine PM, showed a
decrease in baroreflex sensitivity (Legramante et al.
2009), pointing to the ability of the PM to act as a
homeostatic stressor modulating the afferent
brain–heart axis pathway. Chemoreceptor modulation
was also associated with PM exposure in a mouse
model of heart failure, where the authors showed that
the cardiac arrhythmias related to exposure to PM were
in part due to altered sensitivity of the carotid body
innervation (Wang et al. 2012). The direct effect on the
circadian rhythm was observed in a study in mice, which
reported disturbance of rhythmic oscillation in the HPA
axis markers upon exposure to chronic ambient PM2.5,
ultimately disrupting the circadian rhythm (Hu et al.
2021). The uptake of particles into the brain is
facilitated by migration of particles along the olfactory
nerve, leading to neuronal activation (Cheng et al. 2016)
and potentially adverse signaling via the
brain–heart axis.

Studies in animal models showed that air pollution
exposure could lead to oxidative stress in the brain and
in the cardiovascular system (Park et al. 2020, Kuntic et al.
2023). Air pollution-derived PM was previously shown to
cause oxidative stress through the activation of the
NADPH oxidase (Xu et al. 2010). NADPH oxidase
activation seems to be dependent on toll-like receptor 4
(TLR4) signaling, as Tlr4 deficient mice showed reduced
p47phox phosphorylation, an activation marker of the
phagocytic NADPH oxidase (Kampfrath et al. 2011). In
addition, oxidative stress response through the activation
of nuclear factor (erythroid-derived2)-like 2 (Nrf2)
signaling has been observed in different brain regions
of UFPM exposed mice (Guerra et al. 2013). Nrf2
activation, envisaged by increase in heme oxygenase 1
(Ho1) and NAD(P)H dehydrogenase [quinone] 1 (Nqo1)
expression, was also observed in vascular tissue of PM
exposedmice (Gao et al. 2021). Mitochondrial dysfunction
and increased mitochondrial oxidative stress were also
observed in urban PM2.5 exposed mice (Zou et al. 2022).

Effects of noise on the stress response pathway

Recent data from animal studies corroborates the
findings that noise causes stress and behavioral
changes (Jafari et al. 2017, Hahad et al. 2022), increases

risk factors associated with cardiovascular and
cerebrovascular disease (Hahad et al. 2020, Chi et al.
2021), and exacerbates preexisting health conditions
(Chen et al. 2016, Luo et al. 2024). In a short-term
(4 days) noise exposure mouse model, activation of the
SNS, RAAS, and HPA axis has been evidenced by elevated
plasma catecholamines (particularly norepinephrine and
dopamine), angiotensin-II, and renal and plasma cortisol
levels (Munzel et al. 2017, Sun et al. 2021). A study in rats
showed that 30 days (4 h per day) of exposure to 100 dB
white noise led to the activation of the HPA axis and
increased CRH and CRH-R1 in the amygdala (Eraslan
et al. 2015), which in turn results in the atrophy of
brain structures (particularly the hippocampus,
prefrontal cortex and amygdala) and a decrease in
neuronal density. These morphological changes
ultimately lead to cognitive and motor dysfunction
(Jafari et al. 2018). Interestingly, in the rat pup model,
stimulation with moderate noise (∼65 dB), a stimulus that
does not produce behavioral changes or increases
corticosterone concentrations, has been shown to
inhibit the induction of long-term hippocampal
potential. This, in turn, significantly reduces
hippocampal-related learning and memory abilities
(Zhang et al. 2021). Notably, during a 10-day 30-min per
day exposure to loud noise (100 dB), male mice showed a
more pronounced HPA axis activation, characterized by
elevated and persistently higher ACTHand corticosterone
levels than females (Babb et al. 2014, Lee et al. 2024),
possibly due to the protective effects of estradiol
(Heck & Handa 2019).

In both the short-term and long-term (28-day) models of
aircraft noise exposure, murine subjects demonstrated
an increase in both systolic and diastolic blood pressure,
endothelial cell dysfunction, blood–brain-barrier
hyperpermeability and neuroinflammation (Munzel
et al. 2017, Frenis et al. 2021b, Lin et al. 2022). Mice
were unable to establish noise tolerance, which led to
persistent brain–heart axis dysregulation. In rodent
models induced by a combination of electric shock and
noise, prorenin and its receptor were upregulated in the
RVLM. These factors activate theNLRP3 inflammasome in
microglia, increasing sympathetic nerve activity (Hu et al.
2020, Zhang et al. 2020), providing a link between noise
exposure and inflammatory response through the
activation of the brain–heart axis. Similar studies have
found that continuous noise and electric shock stimuli
significantly upregulate the expression of NaV1.6 in the
RVLM, resulting in SNS activation and elevated blood
pressure (Wu et al. 2018). In the study using
cardiovascular drugs to intervene in aircraft noise-
induced cardiovascular disease, the treatment of mice
with the beta-blocker propranolol and the alpha-
blocker phenoxybenzamine prevented endothelial and
microvascular dysfunction, as confirmed by a
reduction in levels of inflammation and oxidative stress
indicators in heart and brain (summary of the
mechanism shown in Fig. 4) (Kuntic et al. 2025).
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Similarly, applying α2-adrenoceptor antagonists (beditin
and mesedin) has been shown to alleviate the enhanced
oxidation of plasma proteins and increased anxiety
behavior in rats caused by long-term noise exposure
(Manukyan et al. 2020).

Activation of the stress response can induce oxidative
stress through mechanisms described above. Animal
studies have demonstrated that cardiovascular and

cerebral oxidative stress can be induced by noise
exposure, especially through the activation of the
NADPH oxidase (Munzel et al. 2017, Frenis et al. 2021a,
Molitor et al. 2023). The NADPH oxidase is activated by
phosphorylation of the cytosolic subunit p47phox by
protein kinase C (PKC), which can be mediated by
angiotensin-II, endothelin-1 or by the activation of α-
and β-adrenergic receptors (Nguyen Dinh Cat et al.
2013, Kroller-Schon et al. 2018). Mitochondria were also

Figure 4

Effects of noise on the brain–heart axis focus on the α- and β-adrenergic signaling. Noise activates both the HPA axis and the sympathetic nervous system,
resulting in release of catecholamines that activate the α- and β-adrenergic receptors. This leads to inflammation and oxidative stress in the
cardiovascular tissue. α- and β-adrenergic receptors are G protein-coupled receptors that can produce diacylglycerol (DAG) through the activation of
phospholipase C. DAG can further activate PKC, which activates NADPH oxidase subunits through phosphorylation, resulting in the formation of the
superoxide producing complex. NF-κB can be activated by catecholamines or by prolonged exposure to cortisol in a state called cortisol resistance (acutely,
cortisol blocks NF-κB) (Cohen et al. 2012). Activation of NF-κB leads to the transcription of pro-inflammatory cytokines and progression of inflammation.
Nonspecific α- and β-receptor antagonists (propranolol and phenoxybenzamine) can alleviate the effects of noise on vascular oxidative stress. CRH,
corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; PIP2,
phosphatidylinositol 4,5-bisphosphate; IP3, Inositol trisphosphate; PKC, protein kinase C; ROS, reactive oxygen species. Created with
BioRender.com and modified from Kuntic et al. (2025) with permission.
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observed to be sources of oxidative stress in noise
exposure models (Kroller-Schon et al. 2018), especially
in cardiovascular disease models, where noise was
shown to additively increase mitochondrial superoxide
levels (Molitor et al. 2023). Other sources of oxidative
stress, such as the uncoupled eNOS, were also observed
to be present in noise exposed animals (Munzel et al.
2017, Steven et al. 2020, Eckrich et al. 2021, Frenis et al.
2021a).

Conclusion
Air and noise pollution are significant environmental
stressors impacting human health. Air pollution,
particularly PM2.5, contributes to 8.3 million excess
deaths annually through systemic inflammation and
oxidative stress and by modulating the stress response
peripherally. However, some direct contribution of small
particles on the brain can be expected by the uptake via
the olfactory nerve. Noise pollution, often co-existingwith
air pollution, acts as a psychological stressor with
primarily central effects, activating the HPA axis and
SNS, leading to cardiovascular and neuropsychiatric
diseases. Both risk factors have a negative effect on the
brain–heart axis, share similar pathological mechanisms,
and cause additive health damage (Kuntic et al. 2023).
Despite WHO guidelines, adherence to legal noise and
PM2.5 limits remains inadequate. Strengthening
regulations, improving urban planning, and advancing
mitigation strategies are essential to reducing their health
burden and protecting public well-being. Urgent action is
needed to address these environmental risks effectively.
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