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Circadian rhythms: mechanisms and implications in cardiovascular diseases

Circadian rhythms have an impact on cardiac disease, several evironmental and behavioural factors can induce circadian misalignment. Several 
opportunities can be considered to integrate circadian-based strategies, and to target and detect circadian rhythm variation.
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Abstract

Circadian rhythms, controlled by the suprachiasmatic nucleus and peripheral clocks, regulate 24-h cycles in biological processes such as the cardio-
vascular system. Circadian rhythms influence autonomic balance, with parasympathetic dominance during sleep supporting cardiac recovery and 
sympathetic activation during the day supporting circulatory demand. Congruent with systemic and cellular circadian rhythmicity, 24-h patterns arise 
in the pathophysiology of cardiovascular diseases, including ischaemic heart disease, heart failure, and arrhythmias.

Daily variations influence the timing and outcome of myocardial infarction, with studies reporting patterns in infarct size depending on the time of 
onset. Similar daily patterns are observed in cardio- and cerebrovascular complications. In heart failure, circadian rhythms are dampened but remain 
intact, suggesting the potential for incorporating timing in diagnostics and therapies. Sudden cardiac death follows a distinct pattern, with a higher 
incidence in the morning. Atrial fibrillation onset, on the other hand, occurs more frequently at night.

Risk factors and modifiers, such as physiological, psychological, lifestyle, and environmental factors and comorbidities interact with circadian 
rhythms, thereby impacting cellular pathomechanisms and development of cardiovascular health and disease. Chronotherapy, which aligns treat-
ments with circadian rhythms, has demonstrated potential for improving the efficacy of cardiovascular therapies. This review examines the influence 
of circadian rhythms on cardiovascular health in the context of specific cardiac diseases and risk factors, and it highlights the therapeutic opportun-
ities informed by circadian patterns.

Keywords Circadian Rhythms • Cardiovascular Disease • Chronotherapy • Chronomodulation • Heart Failure • ischaemic Heart 
Disease • Myocardial Infarction • Epidemiology • Incidence

Introduction
Circadian rhythms are endogenously driven 24 h cycles in biological 
processes that enable organisms to anticipate and adapt to the natural 
day-night light cycle. Circadian rhythms (Box 1) are governed by a 
hierarchical system of biological clocks, with the suprachiasmatic nu-
cleus (SCN) in the hypothalamus serving as the central pacemaker. 
The SCN synchronises peripheral clocks present in virtually all nu-
cleated cells, including those in cardiovascular tissues, through neural, 
humoral, and behavioural signals such as sleep, food intake, and physical 
activity.1,2

Box 1 Overview of terminology
At the molecular level, circadian rhythms are generated by a mo-

lecular clock, which consists of multiple core clock proteins including 
circadian locomotor output cycles kaput (CLOCK), brain and muscle 
ARNT-Like 1, cryptochrome 1/2 (CRY1/2), period 1/2/3 (PER1/2/3), 
retinoic acid receptor orphan receptor α/β/γ (RORα/β/γ), and nuclear 
receptor 1D1/2 (REV-ERBα/β)(Figure 1).3 The core clock machinery 
regulates rhythmic fluctuations in clock-controlled genes expression 
via transcriptional–translational feedback loops.3 The oscillation in ex-
pression of those genes induces a 24 h cycle in processes including 
myocardial contractility, cell metabolism, and endothelial function.1,2

Both the sympathetic and parasympathetic nerve systems directly 
and indirectly affect circadian clock function,4,5 linking sleep to circadian 
clock function as a mediating factor.

Sleep plays an important role in maintaining 24 h rhythms and cardiovas-
cular homeostasis. During sleep, the parasympathetic system dominance 
lowers heart rate (HR) and blood pressure (BP), while reduction in sympa-
thetic tone decreases vascular resistance, collectively supporting cardiac 
recovery. The sympathetic system becomes more active during the day, in-
creasing HR and BP. These fluctuations are linked with daily patterns in dis-
ease onset.6

The early morning transition from sleep to awake increases sympa-
thetic activity, coinciding with an increased risk of events, such as myo-
cardial infarction (MI) (Figure 2).7 Circadian rhythm disruptions—such 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Term Definition

Circadian 
rhythm

An approximately 24-h cycle in biological 
processes, regulated by internal clocks and 
influenced by external factors such as light and 
temperature.

Circadian 
clock

The internal biological mechanism that regulates 
circadian rhythms, primarily controlled by the 
suprachiasmatic nucleus (SCN) in the brain, 
which synchronizes physiological and 
behavioural processes.

Peripheral 
clock

Clocks present in tissues and organs outside the 
SCN, which help regulate local physiological 
functions and can be influenced by external cues 
like food intake and physical activity.

Diurnal 
rhythm

Patterns in behaviour or physiology that occur 
during the daytime and are influenced by 
external environmental factors, such as light and 
temperature, rather than solely by internal 
biological clocks.

Daily patterns Recurring physiological or behavioural changes 
that follow a roughly 24-h cycle, such as 
sleep-wake cycles, hormone release, and body 
temperature fluctuations.

Chronotype An individual’s natural preference for sleep and 
activity timing, ranging from morning types to 
evening types, influenced by genetic and 
environmental factors.
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as shift work, sleep deprivation, or irregular meal timing—impair mo-
lecular clock pathways, increasing the risk of cardiovascular diseases 
(CVD) such as hypertension, atherosclerosis, and arrhythmias.7,8

Heart rate variability (HRV)—reflecting autonomic nervous system 
regulation—follows a daily pattern influenced by the SCN through its 
control of the parasympathetic and sympathetic branches. Additionally, 
peripheral circadian clocks in cardiovascular tissues, such as myocardium 
and blood vessels, contribute to variations in cardiovascular function. The 
daily variations in HRV reflect the combined actions of the SCN and per-
ipheral clocks,1 with sympathetic regulation further supporting circadian 
clocks within the cardiovascular system.

This interplay extends to therapeutic strategies. Chronotherapy, the 
timing of treatments to align with the body’s biological rhythms, has shown 
promise in improving the effectiveness of medications such 

as antihypertensives and anticoagulation.9–11 Understanding the mechan-
isms by which circadian rhythms regulate cardiovascular (patho)physiology 
offers an opportunity to refine prevention and treatment strategies.

This review summarizes the interplay between circadian biology and 
cardiovascular function in the context of cardiac diseases, highlighting clin-
ical implications, diurnal variations in disease onset, and the modulation of 
the circadian interactome by internal and external risk factors. We discuss 
how disrupted rhythms increase cardiovascular risk and their potential 
clinical and research recommendations as outlined in Table 1.

Methods
The methods for this narrative review are described in the supplemental 
material (see Supplementary data online, Methods and Table S1).

Figure 1 Circadian regulation of molecular clock gene signalling and physiological regulation. Circadian regulation of molecular clock gene signalling 
and physiological processes. This overview illustrates the circadian control of molecular clock genes, clock-controlled genes, and physiological functions, 
including the autonomic nervous system’s influence on heart rate variability, heart rate, and blood pressure. ANS, autonomic nervous system; SCN, 
suprachiasmatic nucleus
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Results
Circadian influences on ischaemic heart 
disease
Daily patterns and myocardial infarction risk
Myocardial infarctions (MIs) occur more frequently in the morning 
(Figure 2), a pattern reflecting 24 h rhythms in cardiovascular functions, 
such as BP and coagulation. These rhythms influence platelet aggregation, 
which increases in the morning, alongside higher BP, leading to a higher 
risk of thromboembolic events. Studies found that the incidence of MI 
is three times higher in the morning compared to late evening.12–14

Moreover, ST segment elevation myocardial infarction (STEMI) was 
∼10% more common in the morning than in the afternoon or night.15

Myocardial infarction with non-obstructive coronary arteries follows a 
similar 24 h pattern to MI with obstructive coronary arteries, with higher 
incidence in the morning.16 The time-of-day variations in MI incidence are 
outlined in Supplementary data online, Table S2. Daylight saving time 
transitions have been linked to a rise in MI incidence, particularly at the 
onset of daylight saving time in spring especially during the week after 
transition, with an increase in non-STEMI cases.17 The week after the 

autumn shift shows no significant increase or decrease in MI inci-
dence.17,18 Sleep quality and duration are affected and MI incidence is in-
creased for 3 weeks after the time reset, with a more pronounced 
difference in women,18 a subsequent meta-analysis supported these find-
ings.19 However, sleep may not be the only determinant for the observed 
higher cardiovascular risk, as the general environmental condition, gender 
and individual preference in circadian rhythms (chronotype) may play a 
role. Evening chronotypes, for example, are more prone to sleep-related 
issues, unhealthy lifestyle habits, and metabolic disturbances, all of which 
are linked to cardiovascular risk.20 Additionally, women with an evening 
chronotype appear to be more susceptible to sleep disruption and re-
lated health consequences, which could further influence cardiovascular 
outcomes.20 These findings highlight the importance of considering 
time-of-day and external triggers in the management of ischaemic heart 
disease (IHD).

Infarct size and prognosis
Preclinical studies in mice have shown that ischaemia during the 
sleep-to-wake transition results in larger infarcts and more severe out-
comes.21 Clinical studies were initiated to validate these findings using 

Figure 2 Incidence peaks of cardiovascular diseases during a 24-h period. A circular visualization summarizing the incidence peaks of various cardio-
vascular diseases. Timepoints corresponding to incidence peaks for several cardiovascular diseases are illustrated, with supporting literature provided in 
Supplementary data online, Tables S2–S4. Dashed lines represent second-highest peak of incidence. BP, blood pressure; HF, heart failure; hr, hour; 
OSAS, obstructive sleep apnoea
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methods like cardiovascular magnetic resonance, echocardiography, and 
cardiac biomarkers such as creatine kinase and troponin-I. Biomarkers 
and imaging also reflect circadian differences in myocardial injury, with lar-
ger infarcts observed in the morning.22 A study analysing four randomized 
trials found a circadian variation in myocardial infarct size, with the largest 
infarcts between midnight and 06:00, suggesting that symptom onset 
timing impacts infarct size and potentially future treatments.23 Another 
study using tissue Doppler echocardiography showed the largest infarcts 
and worst left ventricular function after an MI between 06:00 and noon,24

a result that was confirmed by an analysis of 1031 STEMI patients 
revealing that both infarct size and left ventricular function were 
time-of-day-dependent, with the most severe effects observed during 
early morning hours.25 The differences between these studies may reflect 
variations in study design, population characteristics, or definitions of time 
windows, but collectively current evidence suggests that infarct size is 
highest between midnight and noon. Several studies have explored the im-
pact of symptom onset timing in STEMI patients on long-term prognosis. 
One found that late evening or early morning symptom onset increased 
the risk of rehospitalization for heart failure (HF) by 30%–50% after 1 
year, particularly if ischaemic duration exceeded 120 min.26 Another 
study found that night-onset STEMI was associated with higher mortal-
ity.27 Additionally, patients with early morning symptom onset had larger 
infarct sizes and higher 30-day mortality rates.28

A randomized study on aortic valve replacement surgery, where a 
brief ischaemic period is induced, revealed that afternoon surgeries entail 
less myocardial injury, possibly due to circadian patterns influencing myo-
cardial tolerance to ischaemia.29 However, not all studies confirmed a 
daytime dependence in elective cardiac surgery for either aortic valve re-
placement or coronary artery bypass grafting and clinical outcome.30–32

Given the substantial knowledge on the importance of the time-of-day 
for cardioprotective interventions, circadian regulation of central pro-
cesses should be considered in future research and clinical practice.33

Diagnostic tools
Patients with nocturnal ST segment changes, detected through dynamic 
electrocardiogram (ECG) monitoring in individuals undergoing coron-
ary angiography, showed a significantly higher chance of having IHD 
(93%) compared to those without such changes (22%). Particularly, 
nightly peak-shaped ST segment changes were strongly associated 
with IHD.34 These results might provide an opportunity for using a non- 
invasive 24-h diagnostic tool for IHD.

For MI diagnosis cardiac troponin-I shows no significant diurnal fluc-
tuation between morning (23:00 to 14:00) and evening (14:00 to 23:00) 
presentations of MI, indicating that its diagnostic accuracy remains con-
sistent regardless of the time of presentation.35 In contrast, troponin-T 
exhibits a distinct pattern, with concentrations gradually declining dur-
ing daytime and rising overnight, peaking in the early morning 
hours.36,37 While this pattern does not impact the diagnostic accuracy 
for MI, it could influence the interpretation of absolute changes in 
troponin levels within the first hour of presentation suggesting that in-
terpretation in non-MI settings should be informed by time of 
sampling.36

Clinical evidence
Unlike preclinical studies, clinical evidence on circadian biology in MI re-
mains insufficient, as studies have been observational, focussing on 
time-dependent patterns (e.g. time-of-day variations in MI incidence) 
rather than endogenous circadian mechanisms.38

Circadian influences in heart failure
Disruption of circadian biology in heart failure
HF is a global health issue, with circadian disruption contributing to its 
progression. Circadian clocks regulate factors relevant in the patho-
physiology of HF including HR, BP, myocardial contractility, and inflam-
mation. Preclinical studies suggest that disruptions in these clocks 
contribute to declining cardiac function, impaired neurohormonal regu-
lation, and disturbed sleep-wake cycles.6,39 Research highlights that 
time-of-day fluctuations in cardiac contractility and electrical activity 

Table 1 Recommendations for clinical care, studies and 
drug development

Clinical care

• Registration of time in intervention, drug administration, physiological 
and laboratory measurements

• Timing of diagnostics considering optimal predictive value
• Optimalization of clinical care organization considering common time 

of onset of disease
• 24 h ambulatory BP and HR measurements for cardiovascular risk
• Minimalize disruption of daily rhythms and sleep in clinical patients
• Minimalize health hazards of clinical staff due to shift work—provide 

preventive programme

Future 
• Time-of-day-adjusted clinical reference ranges
• Biomarkers for functioning of the circadian system
• Optimizing clinical procedures considering time-of-day

Clinical studies

• Categorize sex, age, and ethnicity
• Consider the effect of cardiovascular risk factors on the circadian 

system (obesity, diabetes mellitus, etc.)
• Consider confounding effects of light exposure, sleeping conditions, 

noise, exercise, diet
• Stratify or standardize time of intervention
• Stratify or standardize time of diagnosis
• Stratify or standardize time of sample collection
• Use more than two timepoints of intervention, medication application 

and/or (intermediate outcome) measurement

Drug development

• Standardize circadian timing in in vitro and in vivo studies
• Study multiple time points
• Considering the influence of circadian rhythms on pharmacokinetics 

and dynamics
• Consider choice of animal model (diurnal, nocturnal) and translate to 

human rhythm if applicable
• Standardize relevant housing rhythm (e.g. light:dark schedule, 

temperature)
• Choose appropriate sex and age
• Align time of feeding
• Consider time of sample collection: standardize
• Consider time of intervention (e.g. drug delivery, surgery): standardize
• Use more than two timepoints for intervention and/or sampling
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are less pronounced in HF patients, driven by altered neurohormonal 
rhythms and reduced ability of the heart to efficiently perform its func-
tions, such as maintaining blood flow and oxygen delivery, particularly 
during the night when myocardial growth and renewal processes are 
more active.40 Deviations of normal 24-h rhythmicity, indicated by ele-
vated nocturnal HR and BP, increase the risk of arrhythmias. Sleep de-
privation, which is common in HF, exacerbates HF via increased 
sympathetic activity and inflammation. Insomnia, obstructive sleep ap-
noea syndrome (OSAS), shift work, and non-dipping hypertension 
worsen HF, by triggering neurohormonal pathways and abnormal BP 
fluctuations.40–42 Circadian clocks also influence cardiovascular growth 
and remodelling, particularly during sleep when HR and BP are normally 
lowest. Disruptions in these mechanisms likely elevate cardiovascular 
risk and may worsen HF outcomes.43

Diagnostic opportunities
Diagnosing disrupted 24 h patterns during HF involves detecting al-
tered sleep patterns, electrophysiology, and neurohormonal imbal-
ances. Recent advancements, including wearable devices, improve 
continuous monitoring by measuring HRV and sleep patterns in real- 
time. Innovative diagnostic methods further highlight the impact of 
time-of-day in HF diagnosis. A deep learning model integrating time, fre-
quency, non-linear and fragmentation HRV parameters from 24-hr 
ECG recordings achieved high accuracy (92.6%), sensitivity (90.7%), 
and specificity (95.2%), particularly in diagnosing HF with preserved 
ejection fraction (HFpEF).44 A colour-coded polar representation com-
bining HRV and patient profiles showed 93% accuracy, complementing 
echocardiography by offering insights into 24 h patterns.44

Time-specific ECG-based regression models used daily fluctuations to 
improve left ventricular ejection fraction estimation.45 Nighttime HR 
patterns linked to increased HF risk in the JAMP study emphasize the 
need for nighttime haemodynamic assessments.46 Furthermore, bio-
marker research revealed diurnal BNP and NT-proBNP variations im-
proving acute HF diagnosis, while ambulatory BP monitoring identified 
non-dippers, enhancing prognostic evaluations.47,48 Interestingly, am-
bulatory invasive monitoring using CardioMEMS revealed diurnal vari-
ation in pulmonary artery pressures with the lowest and most stable 
values in the morning,49 emphasizing standardization of time of 
measurement.

Prognostic implications
Circadian rhythm disruption may have prognostic implications for HF 
patients. The central circadian clock, reflected by melatonin and cortisol 
levels, is dampened but intact in HF patients, emphasizing the potential 
opportunity of timing in clinical interventions to improve outcomes.37

Persistent circadian misalignment, referring to either a blunted day- 
night variation or a shifted rhythm in physiological processes such as 
BP and HR regulation, significantly worsens prognosis.39 Not being 
able to maintain normal circadian rhythms, as reflected by disrupted 
sleep, meal timing, and BP patterns, not only increases HF risk but 
also exacerbates the condition once it develops.41,43

Wrist-based BP monitoring provides accurate nighttime BP assess-
ment with less sleep disruption compared to upper-arm measurement, 
potentially improving hypertension management in these patients.50

Furthermore, BP variability and non-dipping patterns are strong predic-
tors of cardiovascular events in young hypertensive individuals,51 while 
nocturnal thoracic volume overload and abnormal circadian BP pat-
terns–particularly the riser and non-dipper–are critical predictors of 
poorer outcomes in acute HF.52,53

Therapeutic interventions
Therapeutic strategies, most recently sodium-glucose cotransporter 2 
inhibitors have been reported to improve cardiac autonomic function, 
reducing daytime and nighttime HRs while enhancing parasympathetic 
modulation and exercise capacity, which may normalize circadian 
rhythm.54 Beta-blockers enhance HRV by suppressing sympathetic activity, 
leading to an (indirect) increase in parasympathetic activity, particularly 
during high-risk morning hours, potentially supporting cardiac autonomic 
regulation in HFpEF patients.55 Beta-blockers may suppress melatonin pro-
duction, and while melatonin supplementation might have benefits for 
sleep quality in patients on beta-blockers there is limited evidence on its 
clinical benefits in this population.56 Angiotensin-converting enzyme 
(ACE) inhibitors restore circadian BP variability, improving clinical status 
in congestive HF.57 Moreover, digoxin treatment reduces sympathetic ac-
tivity during sleep, modulating BP and parasympathetic function.58

Advanced technologies, such as left ventricular assist devices and high- 
frequency pump monitoring, also highlight the importance of understand-
ing 24 h rhythms in managing HF: Diurnal rhythmicity was demonstrated in 
pump parameters even though the technical settings are fixed, thus reflect-
ing circadian physiology in patient-pump interaction.59

Heart transplantation involves circadian interactions between donor 
and recipient, affecting graft function, immune response, and ischaemia- 
reperfusion injury.60–62 Moreover, cardiac sympathetic reinnervation is 
associated with improved survival rates in heart transplant patients, 
highlighting the beneficial influence of the autonomic nervous system.63

The impact of donor heart procurement time or re-implantation timing 
on transplant viability, in relation to patient prognostics, is difficult to 
investigate due to multiple confounding factors (wakefulness/focus of 
the surgeon, logistics, etc.). One study found that donor hearts pro-
cured in the early morning between 04:00 and 11:00 were associated 
with better long-term survival rates, while nighttime surgeries were 
linked to worse outcomes.60

Circadian rhythms in electrophysiology 
and arrhythmias
Daily rhythms are present in cardiac electrophysiology, including sinus 
node function, myocardial refractoriness, QT interval, QRS duration, 
and PR interval. These rhythms are regulated by the autonomic nervous 
system via the SCN, and the peripheral cardiac cell clock governing ion 
channel transcription and function.64,65

During the night the autonomic tone shifts towards parasympathetic 
(vagal) dominance, facilitating relatively benign bradyarrhythmias such 
as sinus bradycardia and atrioventricular block with prolongation of 
PR, QT, and QRS intervals.66 Conversely, the early morning hours 
are characterized by a surge in sympathetic activity, involving increase 
in circulating levels of catecholamines. This sympathetic activation, 
along with concurrent increases in HR, BP, and myocardial oxygen de-
mand, are thought to increase the risk of ventricular arrhythmias (VA) 
by triggering abnormalities in intracellular calcium handling and action 
potential repolarization.67 Another actively studied mechanism under-
lying the susceptibility of VA in the morning hours is the circadian clock 
dependent modulation of electrical activity driven by functional changes 
of cardiac ion channels and extrinsic autonomic receptor mediated me-
chanisms (reviewed by Bernardi et al.68). Multiple ion channels subunits 
exhibit distinct 24-h mRNA and/or protein level oscillation, which are 
abolished upon disruption of the cardiomyocyte circadian clock.68

Moreover, neurohumoral factors regulate cardiac electrophysiology 
by modulating ion channel expression. During the morning cortico-
sterone peak, increased binding to the circadian clock-regulated 
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glucocorticoid receptor enhances the expression of ion channel subu-
nits Scn5a and Kcnh2 and corresponding ionic currents Ina and Ikr, along 
with the gap junction protein Connexin 43.69 These changes alter elec-
trophysiological properties in response to hormonal signals potentially 
increasing arrhythmia susceptibility in during the active phase.69

In humans, ion channel expression also follows day-night rhythms.70

However, it is still unknown how combination of these ion channel sub-
units rhythms impacts the ventricular action potential.

Daily patterns in cardiac electrophysiology are reflected by epidemio-
logical studies, with a well-documented peak of VA incidence in the morn-
ing (07:00–12:00), mirroring sudden cardiac death patterns (Figure 2; 
Supplementary data online, Table S3). Variations in study populations 
and advances in pharmacological management have highlighted factors 
that attenuate this pattern, including comorbidities (chronic kidney disease, 
diabetes mellitus71,72), beta-blockers blunting autonomic surges, and ad-
vanced HF therapies.73–75 Notably, ventricular tachyarrhythmias in pa-
tients with OSAS, Brugada and early repolarization syndrome often 
occur nocturnally.76–81 This is linked to elevated nocturnal sympathetic- 
and reductions parasympathetic tone in OSAS patients.82

For atrial fibrillation (AF), the interplay between autonomic inputs 
and tim- of-day is more complex (see Supplementary data online, 
Table S4). A subset of patients exhibit a predominant or even exclusive 
nocturnal onset of AF, potentially driven by vagal tone.83 This parasym-
pathetic activity shortens the atrial effective refractory period by activa-
tion of the acetylcholine-activated outward potassium current, and 
promotes electrical remodelling, thereby increasing the propensity 
for re-entry circuits.84 In contrast, AF episodes during the day are often 
triggered by adrenergic surges (physical or emotional stress), promot-
ing arrhythmogenesis by boosting calcium dependent cardiac function 
via L-type calcium channels leading to early afterdepolarizations.85,86

However, direct sympathetic and parasympathetic nerve activity re-
cordings in canine models have demonstrated that AF initiation is often 
preceded by concurrent increases in both autonomic outputs.87 This 
finding suggests that autonomic co-activation may play a pivotal 
role, underscoring the complex and multifactorial nature of AF initi-
ation. Additionally, sleep-related disorders, such as OSAS, exacerbate 
nocturnal autonomic dysregulation by introducing intermittent hyp-
oxia and sympathetic bursts, further increasing AF susceptibility dur-
ing sleep.86,88

A recent literature review reported a periodicity analysis to support 
the hypothesis of nocturnal onset subtype of AF in more detail.83 In total 
2080 patients with 11 886 onsets of AF were included from 14 studies 
and a cosine fitting curve (R2 .77; P = .03) with a 24 h period was plotted. 
Significantly more onset of AF was detected during the night (22:00– 
07:00) compared to the daytime (07:00–22:00). Additionally, the effect 
of specific sleep stages (e.g. shorter slow-wave sleep), sleep-disordered 
breathing, and the effect of body positions on the onset of AF were de-
scribed.89–92 In contrast, paroxysmal supraventricular arrhythmias are 
most frequent during the day, conceivably driven by cell-autonomous cir-
cadian rhythmicity in addition to sympathetic drive.93,94

Diagnostic, therapeutic and prognostic implications
Understanding daily variations in cardiac electrophysiology potentially 
has implications for diagnosis, treatment and prognosis. For instance, 
the QTc interval lengthens at night, and shortens with the morning 
autonomic surge, necessitating careful timing of ECG acquisition to 
avoid false-positive and false-negative diagnoses of long QT syndrome 
and drug induced QTc changes.95 Moreover, the extent of QTc interval 
prolongation after levofloxacin administration depends on dosing time, 

with the largest effect at 14:00 suggesting a time-adjusted strategy could 
improve safety in high-risk patients.96 When considering prognostic im-
plications, time-of-day was an independent determinant of the cor-
rected QT interval, with higher mortality risk in patients showing 
increased (peak-to-trough amplitude >15 ms) or diminished 
(peak-to-trough amplitude <5 ms) QT rhythmicity, as identified in a re-
cent cohort study of 100 644 patients.97

Circadian rhythms in other cardio- and 
cerebrovascular complications
The state of the central and peripheral clocks and the control they have 
over the physiology of the organism (HR, BP, peak cortisol in blood) are 
indicative of the chronobiological patterns seen in the incidence of car-
diovascular events.98 A similar pattern exists for diverse cardiovascular 
complications. Rupture and dissection of aortic aneurysms are more 
likely to occur in the early morning,99–101 as well as ischaemic and 
haemorrhagic stroke.102 As these events represent completely differ-
ent entities, similarity in chronobiological patterns is unexpected, but 
obviously all of them share the same circadian mechanisms.103,104

Another well-known cardiovascular complication is cancer therapy 
related cardiac damage, a leading cause of morbidity and mortality in can-
cer survivors. Anti-cancer therapies, such as anthracyclines, trastuzumab, 
taxanes, fluoropyrimidines, and tyrosine kinase inhibitors are well- 
documented for their cardiotoxic potential.105 While advancements in 
cardio-oncology have focused on mitigating these risks, the role of circa-
dian rhythms in influencing cardiotoxicity and arrhythmogenesis is an 
emerging area of interest with substantial clinical implications.

The cardiomyocyte circadian clock governs numerous cellular pro-
cesses, such as cardiac metabolism,106 DNA repair,107 cell fate,108 driv-
ing the time-dependent susceptibility to anthracycline-induced 
cardiomyocyte death observed in vitro.109,110 Preclinical studies further 
substantiate a circadian pattern in anthracycline-induced myocardial in-
jury, with a protective effect observed when anthracyclines were admi-
nistered around the transition from rest to activity phase,111–113 hinting 
towards a protective effect in the morning for humans. However, ran-
domized controlled trials assessing the impact of chronomodulated 
chemotherapy administration on cardiotoxicity and therapeutic effi-
cacy are still lacking.

Modification of circadian rhythms and the 
interactome by risk factors and risk 
modifiers
Circadian interactomics describes the investigation of changes of circa-
dian clock protein-protein interactions by various factors leading to al-
teration of the down-stream interactome, e.g. timekeeping of nuclear 
receptors and the exosome (mostly by the negative or repressive 
arm of the circadian clock) or of translation and transcription factors 
(mostly by the positive or activation arm of the circadian clock).114

Circadian rhythms and CVD are linked through multiple factors, with 
disruptions increasing the severity of cardiovascular risk factors and 
vice versa.38,115 Circadian rhythms can be disrupted at various levels, 
such as when clock input signals are misaligned with intrinsic molecular 
clocks, which can occur during jet lag or shift work.116,117 The present 
overview explores the connection between circadian rhythms and vari-
ous factors affecting cardiovascular risk, including physiological modula-
tors such as age, sex and pregnancy/lactation, comorbidities such as 
hypertension and metabolic disease, lifestyle factors such as smoking, 
alcohol intake and exercise, and environmental factors such as artificial 
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light, temperature, air quality and noise (Figure 3).38 While an associ-
ation is often observed in preclinical and clinical settings, a causal rela-
tionship with most factors remains to be established.

Physiological factors and comorbidities
Circadian misalignment in healthy adults leads to sex-specific changes in 
energy homeostasis, independent of behavioural or environmental fac-
tors,118 which are also observed following central circadian clock adap-
tations during pregnancy and lactation.119 Ageing affects the period and 
amplitude of circadian rhythms and melatonin levels, both of which de-
cline later in life.120 Obesity and diabetes impact both circadian clock 
gene expression and function,121 and vice versa circadian rhythm dis-
ruption promotes metabolic disorders.122 CVD risk is also modulated 
by sex and age123 and cardiometabolic comorbidities,124 suggesting po-
tential pathogenic contributions by circadian dysregulation. 
Inflammation and circadian rhythms are closely linked, with immune 
cell activity and pro-inflammatory cytokine levels showing 24 h fluctua-
tions regulated by clock genes to maintain immune balance and tissue 

homeostasis. Chronic sleep deprivation and circadian disruption can 
amplify inflammation, increasing pro-inflammatory cytokines (IL-1β, 
IL-6, and tumour necrosis factor-α) and disrupting immune regulation, 
which are key contributors to CVD.125–127

Psychological and lifestyle factors
Depressive disorders are often associated with disrupted clock gene 
expression, resulting in depressive-prone features in rodent models.128

Mental stressors cause dysregulation of circadian rhythm through oxi-
dative stress.129 Physical performance is influenced by circadian clock 
proteins, while inactivity or exercise can affect the circadian system.130

While exercise is a protective intervention in HF,131 benefits are also 
dependent on both time of the day and an individual’s chronotype.132

Although exercise is generally regarded as highly protective, morning-
ness persons may benefit more when exercising in the morning, where-
as eveningness persons benefit from early or late exercise. Chronic 
alcohol consumption may disrupt molecular clocks and contribute to 
human alcohol-induced liver disease133 and addiction. Smoking alters 

Figure 3 Overview of the circadian-cardiac interactome. An overview figure inspired by a directed acyclic graph, illustrating the key factors of the 
circadian-cardiac interactome. This visualization integrates the risk factors and risk modifiers influencing circadian rhythms and cardiac function. The 
red arrows indicate the direct influence of lifestyle, physiological, psychological and environmental factors on cardiovascular disease triggering key 
pathomechanisms by changes of key components of the interactome. Key pathomechanisms for cardiovascular diseases are higher levels in stress hor-
mones, dysregulated expression of ROS producing and degrading enzymes leading to oxidative stress, activation of immune cells and increase in 
pro-inflammatory cytokines, exacerbated inflammation and progression of atherosclerosis, disturbed metabolism of glucose and fatty acids, impaired 
mitochondrial function (e.g. respiration, autophagy), dysregulated epigenetic pathways, enhanced thrombotic pathways and altered coagulation, phase 
shifts in blood pressure maximum and generally higher blood pressure levels, impaired vascular function, exacerbated arterial stiffness and promotion of 
fibrosis. The blue arrows indicate the influence of the risk factors and risk modifiers on circadian misalignment indirectly impacting cardiovascular risk. 
The black arrows indicate the influences between circadian misalignment, pathophysiology by interactome changes and cardiovascular disease. The 
latter can be beneficially influenced by chronotherapy approaches. CVD, cardiovascular disease; DAG, directed acyclic graph; SCN—suprachiasmatic 
nucleus;
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gene expression of central and peripheral clock genes134 affecting sleep 
and circadian rhythms.135 Intermittent fasting improves health in part 
through benefits to circadian rhythm, and was found to decrease all- 
cause mortality and the risk of non-fatal MI.136,137 Nutrition and nutra-
ceuticals can help reset peripheral circadian clocks.138 Shift work, jetlag 
and other sleep disorders disrupt the circadian clock system, which is 
associated with increased ischaemic heart damage upon MI.139,140

Thus, both well-accepted cardiovascular risk factors (depression and 
other mental disease,141 alcohol, smoking, unhealthy diet,142 and shift-
work) and protective factors (physical exercise, healthy diet and inter-
mittent fasting) provide their effects at least in part via the circadian 
clock.

Environmental factors
Temperature oscillations, as small as 1°C, can alter the expression of cir-
cadian genes, affecting amplitude and phase.143 The circadian period 
length remains constant due to temperature compensation.144

Auditory function and sound stimuli, especially during the night, can also 
influence circadian rhythms through sleep deprivation, stress reactions 
(e.g. higher adrenaline and cortisol levels affect sleep) and oxidative stress 
(via redox modifications of clock core components and related phase/ 
amplitude shifts).145 Light is a significant environmental signal that influ-
ences circadian rhythms, with detrimental effects of artificial light at night 
on sleep, stress hormones and oxidative stress,146 and seasonal changes 
affecting chronotype.147 Chemical pollutants, such as air pollution and 
heavy metals or pesticides can significantly alter circadian rhythms mostly 
by oxidative stress-dependent processes or direct interaction of the tox-
ins with thiol-based enzymatic activity,148,149 affecting sleep-wake patterns 
and increasing CVD risk by causing oxidative stress.150 Extreme tempera-
tures increase cardiovascular mortality151 and are a leading cause of 
death.142 Furthermore, transportation noise,152 air pollution,142 and toxic 
chemical in soil/water152 are leading risk factors for CVD or mortality.

Chronomodulation of cardiovascular 
medicine
Chronotherapy considers the effect of circadian clock-driven rhythms 
in pharmacokinetic and pharmacodynamic processes, to minimalize ad-
verse effects and optimize treatment efficacy.153 Moreover, it includes 
the circadian variation in disease pathophysiology influencing symptom 
intensity and time-at-risk as seen in MI, VA, and HF. Many cardiovascular 
drugs are prescribed at specific times as recommended by pharmaceut-
ical companies, but the rationale is rarely disclosed. For example, short- 
acting statins are prescribed at bedtime to match cholesterol synthesis, 
whereas long-acting statins, with >24 h half-lives, do not necessitate cir-
cadian considerations. This principle extends to other drug classes, yet 
long-acting drugs may also be optimized through chronotherapy strat-
egies depending on their pharmacodynamic profile.154

Hypertension management exemplifies the importance of circadian 
considerations in clinical practice. Disrupted BP rhythmicity, especially 
high morning surge and the absence of a nocturnal BP dip, are associated 
with increased risks for cardiovascular events, atrial stiffness and chronic 
kidney disease.155–157 Chronomodulated antihypertensive therapy aims 
at more precisely mitigating these risk factors, and has been studied in 
clinical trials. Initially the MAPEC study (2010)158 and HYGIA trial 
(2019)159 demonstrated significant reductions in major cardiac events 
(61% and 45%, respectively) with bedtime antihypertensive therapy. 
However, recent evidence provides a more nuanced perspective. A 
Cochrane systematic review and meta-analysis reported modest reduc-
tions in 24 h systolic (−1.34 mmHg, 95% confidence interval [CI]: −2.38 

to −.30) and diastolic (−1.01 mmHg, 95% CI: −1.75 to −.27) BP and the 
morning surge following bedtime antihypertensives administration, but 
found no conclusive protective effect on cardiovascular outcomes.160

Similarly, no significant benefit or harm associated with bedtime use of 
one antihypertensive medicine was found in the BedMed trial, despite 
a substantial difference in nocturnal systolic BP.161,162 Overall, these 
studies suggest that administering antihypertensives upon waking or at 
bedtime is equally effective in primary care populations. However, im-
portant limitations include the short study duration (<6 months), lack 
of assessment of left ventricular hypertrophy, and absence of specific 
analysis for non-dipping hypertensive patients, despite previous evidence 
of benefit.158 Bedtime administration may still be considered for patients 
with specific risk factors comorbidities (e.g. IHD, non-dipping hyperten-
sion) or patient characteristics. For example, bedtime doses of long- 
acting diltiazem were associated with significantly greater reduction of 
mean systolic and diastolic BP in patients with moderate-to-severe es-
sential hypertension,9 and an increased exercise tolerance in patients 
with angina pectoris163 compared to the morning dose. Moreover, ac-
counting for endogenous circadian rhythms has shown potential for 
stratification and personalized tailoring of antihypertensive therapy 
to mitigate the risk of adverse cardiovascular events in a recent 
proof-of-concept study.164

Optimizing the timing of drug administration in cardiovascular therapy 
may offer benefits beyond BP control, potentially influencing cardiac re-
modelling. Circadian angiotensin expression suggests ACE inhibitor effi-
cacy depends on dosing time. In a murine pressure-overload HF model, 
captopril administration during the rest period reduced cardiac remod-
elling and improved cardiac function without affecting BP.165

Diurnal coagulation and fibrinolysis fluctuations, resulting in hyper-
coagulability and hypofibrinolytic conditions during the morning hours, 
together with increased platelet activity, suggest an optimal anticoagu-
lant timing.166 Evening rivaroxaban enhanced morning anticoagula-
tion,10 while evening low-dose aspirin better suppressed the COX-1 
platelet activity peak upon wakening.166,167 A clinical trial confirmed 
bedtime low-dose aspirin more effectively reduced morning platelet ac-
tivity, particularly in women, correlating with improved outcomes in 
high-risk pregnancies.168,169

Incorporation of circadian medicine in 
clinical care and research
Circadian medicine encompasses multiple facets, including the timing of 
treatment and diagnosis (exploiting), integrating patients’ circadian char-
acteristics (detecting), and synchronizing or/and modifying the circadian 
system (targeting).170 However, a lack of awareness among medical pro-
fessionals limits the integration of circadian strategies into routine patient 
care. Here, we provide a summary of opportunities and considerations 
for integration of circadian medicine in cardiovascular research.

Routinely monitored patient variables, such as core body tempera-
ture, HR, and BP, exhibit robust 24 h rhythms in healthy individuals.171

Interpreting these parameters with reference to the time of measure-
ment is already common use. Additionally, since circadian rhythms in 
these variables are markers of health, assessing the degree of circadian 
disruption may offer valuable insights for diagnosing disease or deter-
mining prognosis. For example, evaluating the peak-to-trough excur-
sions of physiological parameters in intensive care unit patients has 
shown that deviations of the circadian rhythm are associated with long-
er length of stay and higher in-hospital mortality.172 Similarly, a non- 
dipping BP phenotype revealed by 24 h measurements has been linked 
to worse disease outcomes, as discussed in section 3.157
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The circadian variation of physiological processes is not limited to vi-
tal signs but extends to circulating factors in clinical laboratory measure-
ments. For instance, cardiac biomarkers such as troponin-T,173

NT-proBNP47 and soluble ST2174 display circadian variation in plasma 
levels. Establishing time-dependent reference ranges for such biomar-
kers could help prevent both false-negative and false-positive results 
leading to under- and overdiagnosis, and in research settings would in-
crease sensitivity for treatment effects.

To further assess the value of integrating circadian medicine into 
clinical routines, it is essential to determine the impact of timing on 
drug administration and interventional therapies (e.g. surgical proce-
dures29) with respect to efficacy, safety, and healthcare costs. 
However, most studies conducted to date have significant limitations: 
(i) they are often small, single-centre studies, reducing reproducibility; 
(ii) they typically compare only two time points, whereas at least three 
are required to clearly demonstrate peak/trough variation; and (iii) 
they fail to account for individual circadian phase as a potential con-
founder (e.g. seasonal variability, working hours/shift work, transmer-
idian travel, and chronotype including food intake and exercise). 
Investigating individual variability and identification of healthy people 
at risk is increasingly feasible with the widespread use of wearable de-
vices, which provide extensive data on total activity, timing of physical 
activity, posture, HR (and variability), sleep quality, and body tempera-
ture. Additionally, recent advancements in digital circadian assessment 
tools, such as TimeTeller,175,176 enable accurate determination of indi-
vidual circadian rhythms and their strength. Integrating these circadian 
metrics, with the established chronotype assessment tools (e.g. ques-
tionnaire), into clinical care represents a significant opportunity to en-
hance patient management and optimize the efficiency of clinical 
studies.

Conclusions
In conclusion, circadian rhythms play a crucial role in cardiovascular 
health, influencing autonomic balance, cardiac function, and CVD pro-
gression. Disruptions increase the risk of IHD, HF, and arrhythmias, 
highlighting their role in CVD pathophysiology. By aligning interventions 
with the natural circadian cycle, it may be possible to enhance the effi-
cacy of cardiovascular treatments, reduce side effects, and potentially 
improve long-term outcomes. Multiple factors related to the circadian 
clock can be considered to enhance quality or efficiency of clinical care, 
future clinical studies, and drug development.
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