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A B S T R A C T

Particulate matter (PM) poses a significant risk to human health; however, it remains uncertain which size 
fraction is especially harmful and what mechanisms are involved. We investigated the varying effects of particle 
size on specific organ systems using a custom mouse exposure system and synthetic PM (SPM). Whole-body 
exposure of mice showed that micrometer-sized fine SPM (2–4 μm) accumulated in the lungs, the primary 
entry organ, while nanometer-sized SPM (<250 nm) did not accumulate, suggesting a transition into circulation. 
Mice exposed to micro-SPM exhibited inflammation and NADPH oxidase-derived oxidative stress in the lungs. In 
contrast, nano-SPM-exposed mice did not display oxidative stress in the lungs but rather at the brain, heart, and 
vascular levels, supporting the hypothesis that they penetrate the lungs and reach the circulation. Sources of 
reactive oxygen species from micro-SPM in the lung are NOX1 and NOX2, driven by pulmonary inflammation, 
while oxidative stress from nano-SPM in the heart is mediated by protein kinase C-dependent p47phox phos-
phorylation, leading to NOX2 activation in infiltrated monocytes. Endothelial dysfunction and increased blood 
pressure were more pronounced in nano-SPM-exposed mice, also supported by elevated endothelin-1 and 
reduced endothelial nitric oxide synthase expression, which enhances constriction and diminishes vasodilation. 
Further, we estimated the cardiovascular disease burden of nano-particles in humans based on global exposure 
data and hazard ratios from an epidemiological cohort study. These results provide novel insights into the disease 
burdens of inhaled nano- and micro-particles (corresponding to fine and ultrafine categories), guiding future 
studies.
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1. Introduction

Air pollution is a major contributor to non-communicable diseases 
[1]. The Global Burden of Disease study ranks air pollution as the 
foremost risk factor for disability-adjusted life years (DALYs) and deaths 
[2,3], with annual excess mortality estimates ranging from around eight 
million [4,5] to ten million [6]. Particulate matter (PM), a leading 
component of air pollution, is particularly harmful, impacting the car-
diovascular system [7]. PM includes all solid and liquid particles in the 
air [8,9] and varies in sources, structure, composition, and size. The 
composition of PM is determined by its origin (natural or anthropo-
genic) and environmental interactions [10,11]. PM is commonly clas-
sified by diameter: PM10 (<10 μm), PM2.5 (<2.5 μm), and ultra-fine (or 
nano-) particles (UFPs, <0.1 μm) [12], with most health studies and 
regulations focusing on the mass concentrations of PM10 and PM2.5 [13]. 
Importantly, PM2.5 encompass nanoparticles by definition. The major 
sources of UFP are combustion (burning liquid fuels in engines and solid 
fuels for heating), tire and brake wear, and catalytic converters. All these 
sources contribute to the particle size distribution, including UFP and 
“nano-sized” PM [14]. Micrometer-sized PM additionally originates 
from natural sources like dust or forest fires, but also arises due to 
coagulation and growth of smaller PM.

Exposure to urban particles leads to cardiovascular and other end- 
organ damage, largely mediated by activation and infiltration of im-
mune cells and reactive oxygen species (ROS) formation by the phago-
cytic NADPH oxidase, NOX2, demonstrated by genetic deletion of key 
components such as Toll-like receptor-4 and gp91phox in this process 
[15]. PM2.5 exposure also promotes atherosclerotic plaque formation 
through oxidative stress mechanisms in mice [16] and humans [17], as 
well as acute myocardial infarction due to high peak concentrations of 
PM [18]. Specifically, UFPs can reach the mitochondrial matrix, causing 
disturbances in mitochondrial respiration and the generation of super-
oxide radicals and hydrogen peroxide, contributing to damage in sur-
rounding tissues [9].

Ambient PM typically has a mineral or carbon core and carries 
chemicals like inorganic salts, organic compounds, transition and heavy 
metals, and endotoxins [10,19,20]. The ability of PM to induce oxidative 
stress in vivo is directly connected to its oxidative potential, largely 
determined by particle loading with redox-active chemicals (metals or 
redox-cycling organic compounds) or natural pyrogens that can activate 
immune cells, leading to oxidative burst [21–23]. The oxidative poten-
tial is usually determined by acellular assays (e.g. oxidation kinetics of 
dithiothreitol) [24]. The oxidative potential is inversely associated with 
markers of cardiovascular health, such as microvascular function [25] 
and is likely positively associated with the circulating number of white 
blood cells [26]. Exposure of mice to ambient particles with high 
oxidative potential also caused impaired microvascular function of ce-
rebral and retinal arterioles [27].

Measuring PM size and number concentrations is relatively 
straightforward and less challenging than differentiating composition, 
especially for particles in the PM2.5 and PM10 size ranges [28]. 
Accordingly, PM2.5 and PM10 mass concentrations (in μg/m3) are widely 
adopted parameters in health studies and regulations, while UFP mass 
and number concentrations are less commonly measured and used [29,
30]. Smaller particles tend to be more harmful than larger ones, and 
research often prioritizes PM2.5 over PM10 [12,31]. UFPs may be espe-
cially detrimental, likely due to their ability to penetrate the air-blood 
barrier [32,33]. While UFPs dominate ambient particle size distribu-
tions by number, they only comprise a small fraction of PM2.5 mass [34]. 
Therefore, using PM2.5 or PM10 mass concentrations as a predictor for 
health endpoints not only disregards the composition of particles but 
also the differential harmfulness of particle sizes within PM. While 
smaller particles contribute comparatively little to mass concentrations, 
they may be disproportionately more harmful. While previous clinical 
studies generally overlooked UFP health effects, recent technological 
innovations and more affordable devices now enable UFP measurement 

more broadly.
This study aimed to determine if ultrafine or nano-particles penetrate 

the air-blood barrier more readily than microparticles and if they can be 
detected in remote organs. We also sought reliable functional and mo-
lecular markers related to cardiovascular and pulmonary systems to 
differentiate the level of harm and tissue transmigration between par-
ticle sizes. Hazard ratios from a cohort were used to estimate UFP effects 
on cardiovascular disease incidence in humans, highlighting their 
importance in disease outcomes.

2. Materials and methods

2.1. Exposure of laboratory animals

All animals were treated following the Guide for the Care and Use of 
Laboratory Animals as adopted by the US National Institutes of Health, 
and approval was granted by the Ethics Committee of the University 
Medical Center Mainz and the Landesuntersuchungsamt Rheinland- 
Pfalz (Koblenz, Germany; permit number: 23,177-07/G 20-1-055). All 
mice were housed under a 12-h light/dark cycle in the ventilated animal 
cabinet and fed ad libitum. Male C57BL/6 mice, 8–12 weeks old, were 
exposed to either fluorescent or magnetic particles of two different sizes 
each or fresh air. Exposures to fresh air and one particle size were always 
performed on the same day using littermate mice from the same ship-
ment. The exposure lasted for 6 h per day for 3 days. The average con-
centration of all synthetic particulate matter (SPM) in the exposure 
chamber was 230 ± 46 μg/m3.

The PM concentration range was chosen because 200–300 μg/m3 is a 
peak concentration reached in the most polluted cities [35,36]. The 
relation between mouse exposure and human exposure is approximately 
similar. Mice have a respiratory rate of 80–230 min− 1 [37] and tidal 
volume of 0.2 mL [38], making the total mass of PM being inhaled 
during a 6 h exposure session (approximate chamber concentration of 
200 μg/m3) 1.15–3.31 μg (assuming 100 % PM retention). Assuming the 
mouse weight of 25 g, the 6 h exposure session results in 46–132 
μg/kg/day. The human respiratory rate is approximately 10–20 min− 1 

and the tidal volume is approximately 0.5 L, and assuming a body mass 
of 60 kg and the same exposure of 200 μg/m3, a human would inhale 
24–48 μg/kg/day. Mouse exposure occurs during the sleeping phase 
when the respiratory activity is in the lower range, we can assume that 
mouse and human exposures are on par.

The custom exposure system (described in detail in Ref. [27]) was 
acquired from TSE Systems GmbH (Hochtaunuskreis, Germany). Fluo-
rescent SPM were acquired from Spherotec (Lake Forest, IL, US), 
nano-SPM (FP-0256-2, Nile Red, 0.25 μm, polystyrene) and micro-SPM 
(FP-2065-2, Nile Blue, 2.16 μm, polystyrene). Magnetic SPM were ac-
quired from Kisker Biotech GmbH (Steinfurt, Germany), nano-SPM 
(PMSI-H-0.25-5 (https://www.kisker-biotech.com/article/PMSI-H.25-5), 
superparamagnetic silica-encapsulated FeOx particles, 0.25 μm), 
micro-SPM (PM-4.5 (https://www.kisker-biotech.com/article/PM-4.5), 
magnetic polystyrene-encapsulated FeOx particles, 4.13 μm). The parti-
cles were suspended in CLRwater and placed in the collision nebulizer of 
the exposure system. After nebulizing into an aerosol, the particle sus-
pension droplets passed through a drying column and dry particles 
entered the exposure chamber. The mass concentration of SPM was 
monitored by a particle detector that consists of two instruments for 
different particle size ranges combined into a NanoSpectroPan instrument 
(TSE Systems GmbH, Germany). The electric field mobility spectrometer 
measured the particles in the size range from 0 to 0.2 μm, and the light 
scattering detector measured in the 0.2–35 μm range. The measured 
values of the mean SPM mass concentration in the exposure chamber 
were: 248 ± 66 μg/m3 for nano-fluorescent SPM, 270 ± 65 μg/m3 for 
micro-fluorescent SPM, 209 ± 37 μg/m3 for nano-magnetic SPM and 221 
± 27 μg/m3 for micro-magnetic SPM.

After exposure, the mice were sacrificed by transection of the dia-
phragm and removal of the heart and thoracic aorta under deep 
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ketamine/xylazine anesthesia (i.p. 120/16 mg/kg body weight), and 
tissues were harvested. The mouse exposure paradigm is shown in 
Suppl. Fig. S1.

2.2. Exposure model and emissions for human studies

We applied a data-informed global atmospheric modelling method to 
compute the exposure to air pollutants. The Earth system model with 
comprehensive atmospheric chemistry (EMAC) used in this study sim-
ulates the role of natural and anthropogenic emissions of trace gases and 
particles in atmospheric composition and exposure [39,40]. Anthropo-
genic sources were adopted from the Community Emission Data System 
(CEDS) and the Emissions Database for Global Atmospheric Research 

(EDGAR) [41,42]. Source sectors include fossil energy production, in-
dustry, land transport, shipping, aviation, domestic energy use from 
solid biofuels, waste incineration, agriculture, solvent production and 
use. A comprehensive evaluation of the modelled atmospheric dust, 
black and organic carbon, aerosol optical depth, and aerosol organic and 
inorganic compounds was presented previously [40,43,44]. Methods for 
downscaling UFP concentrations to a high spatial resolution and esti-
mation of exposure and potential impacts on cardiovascular disease 
incidence are presented in the online supplement.

2.3. Additional methods are described in the online supplement

Isometric tension studies in isolated aortic rings to determine 

Fig. 1. Distribution of particles with different size after inhalation in the mouse body. Lungs of fluorescent nano- and micro-SPM exposed animals were 
subjected to fluorescence imaging (B), and the mean pixel intensity was recorded (A). Mice exposed to magnetic nano- and micro-SPM underwent magnetic resonance 
imaging (MRI) of the abdomen measuring T2*-relaxation maps. Representative T2*-weighted images (C) with the corresponding R2* parameter maps (D). Images of 
the heart (E) and liver (F) sections together with quantifications zoomed in from C/D showing pixels with threshold contrast. The scale bar for B is 2 cm, for C and D is 
the same at 20 mm, for E is 2 mm and for F is 5 mm. Data are presented as mean ± SEM from n = 3–7 animals per group. P values for individual comparisons are 
shown indicating statistical significance obtained by one-way ANOVA with Tukey’s multiple comparison analysis.
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endothelial (vascular) function and non-invasive blood pressure mea-
surement was used as previously described [45,46]. Using previously 
described methods, we detected fluorescent SPM in the isolated organs 
[47,48] and iron oxide SPM in the whole body via MRI [49,50]. Dihy-
droethidium fluorescence microtopography was used to determine 
aortic, pulmonary and cerebral ROS levels as previously described [27,
45,46]. Western blot analysis was used to determine protein expression 
in different tissues as previously described [27,45,46]. Detailed 
description of these methods is available in the online supplement.

2.4. Statistics

Where possible, the results are presented as bar graphs with indi-
vidual values. Two-way ANOVA (with Tukey’s correction for compari-
son of multiple means) was used for comparisons of concentration- 
relaxation curves. One-way ANOVA (with Tukey’s post-hock analysis 
for comparison of multiple means) was used for comparisons of all other 
data. All statistical analysis was performed in Prism for Windows, 
version 9. The numerical value of the p-value is either used directly or a 
star signifies a p-value <0.05 that was considered as statistically sig-
nificant. The number of replicates in the different assays may vary since 

Fig. 2. Effects of SPM different size on vascular function. Systolic blood pressure was measured in mice exposed to fluorescent SPM (A) and magnetic SPM (C). 
Vascular function was measured in isolated aortic rings of fluorescent SPM (B) and magnetic SPM (D). The endothelium-dependent relaxation in the presence of 
acetylcholine (ACh) and the endothelium-independent relaxation in the presence of nitroglycerin (GTN) are shown for both type of SPM exposure. Western blot 
quantifications for magnetic SPM-exposed mice aortic endothelial nitric oxide synthase (eNOS) (E) and endothelin 1 (ET-1) (F) expression levels are shown together 
with the representative blots (G). Data are presented as mean ± SEM from aortic rings of n = 4–9 mice per group (B, D), or the mouse number is shown by jitter plots 
for other parameters (n = 4–11 mice per group). P values for individual comparisons are shown, indicating statistical significance, or asterisks are used: * (p < 0.05), 
** (p < 0.01) obtained by one-way ANOVA with Tukey’s multiple comparison analysis for A, C, E and F, and by two-way ANOVA with Tukey’s multiple comparisons 
test for B and D.
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not all animals were used in all assays.

3. Results

3.1. Organ distribution of PM

The size distributions of the used SPM are presented in Suppl. Fig. S2. 
Since particle mass is proportional to the diameter cubed, when 

exposing animals to the same mass concentration, they are exposed to 
more individual particles in the nano-sized SPM exposure groups. The 
measured values of the mean SPM mass concentration in the exposure 
chamber were: 248 ± 66 μg/m3 for nano-fluorescent SPM, 270 ± 65 μg/ 
m3 for micro-fluorescent SPM, 209 ± 37 μg/m3 for nano-magnetic SPM 
and 221 ± 27 μg/m3 for micro-magnetic SPM.

After the exposure to fluorescent micro- or nano-SPM, mice were 
sacrificed and extracted lungs were imaged with a fluorescence imager 

Fig. 3. Effects of fluorescent SPM of different sizes on aortic, cortical and pulmonary oxidative stress. Dihydroethidium (DHE) fluorescence microtopography 
was used to assess the oxidative stress burden in different tissues. Quantification of oxidized DHE fluorescence in aortic (A) and cortical (B) tissue of fluorescent SPM 
exposed animals and in aortic (C), cortical (D), and pulmonary (E) tissue of magnetic SPM-exposed animals are shown together with representative image. Green 
color in panels A and C reflects the autofluorescence of the basal laminae. The arrows in panel E indicate the bronchioles. The scale bar for all images is the same at 
50 μm. Data are presented as mean ± SEM and the mouse number is shown by jitter plots (n = 3–4 mice per group). P values for individual comparisons are shown 
indicating statistical significance obtained by one-way ANOVA with Tukey’s multiple comparison analysis.
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(Fig. 1A and B). The lungs of mice exposed to micro-SPM showed a 
pronounced difference in fluorescence when compared to non-exposed 
mice, while the lungs of nano-SPM-exposed mice showed a more sub-
tle increase in fluorescence intensity (Fig. 1A). The more pronounced 
increase in fluorescence intensity after the micro-SPM exposure points to 
the accumulation of the particles in the lung, while the lower fluores-
cence after nano-SPM exposure points to the migration of particles from 
the lung tissue into circulation.

After the exposure to magnetic micro- or nano-SPM, mice were 
subjected to a whole-body rodent MRI depicting the abdomen of the 
mice (Fig. 1C and D). The T2* relaxation values of the tissue were 
measured, enabling the calculation of R2* parameter maps. We hy-
pothesized that the iron particles may accumulate in the heart (Fig. 1E) 
and liver (Fig. 1F) when they enter the body, and therefore, these organs 
were examined for contrast changes due to the presence of magnetic 
SPM. No statistically significant changes were observed in either organ, 
although a trend toward a reduction in R2* values was observed in the 
nano-SPM-exposed mice.

3.2. Vascular function in nano- and micro-SPM exposed mice

Systolic blood pressure, as measured by the tail-cuff method, was 
increased after exposure to both the fluorescent and magnetic nano- 
sized SPM (Fig. 2A and C). Blood pressure was not changed after 

exposure to fluorescent and magnetic micro-sized SPM. Endothelium- 
dependent vascular relaxation achieved through ACh titration showed 
a right shift after exposure to fluorescent nano-SPM but not after the 
exposure to fluorescent micro-SPM (Fig. 2B). The endothelium- 
independent vascular relaxation in response to nitroglycerin was not 
changed upon fluorescent SPM exposure. The exposure to magnetic 
nano- and micro-SPM caused a right shift in the endothelium-dependent 
relaxation curve by trend, but no clear pattern emerged (Fig. 2D). The 
exposure to magnetic SPM also did not affect the endothelium- 
independent vascular relaxation in response to nitroglycerin. Aortic 
protein expression of endothelin 1 (ET-1) was also increased in mice 
exposed to the magnetic nano-SPM, together with a decrease in endo-
thelial nitric oxide synthase (eNOS) by trend (Fig. 2E and F).

3.3. Higher ROS formation in different tissues of PM exposed mice

Dihydroethidium (DHE) staining was used to assess spatial ROS 
levels in aortic, pulmonary, and cortical tissue of SPM-exposed mice. 
Fluorescent nano-SPM showed a significant increase in oxidized DHE- 
derived fluorescence in both aortic and cortical tissue (Fig. 3A and B). 
The fluorescent micro-SPM did not change the ROS levels in these tissues 
compared to the non-exposed control. Magnetic nano-SPM exposure 
caused again an increased oxidized DHE fluorescence signal (Fig. 3C and 
D), which was absent upon exposure to magnetic micro-SPM. In the 

Fig. 4. Effects of magnetic SPM with different sizes on pulmonary protein expression. Western blot analysis of the pulmonary NADPH oxidase subunits NOX1 
(A), NOX2 (B) and p67phox (C), phosphorylated myristoylated alanine-rich C-kinase substrate (P-MARCKS) (D), protein kinase C alpha1 (PKCα1) (E), and cluster of 
differentiation 68 (CD68) (F) are shown for the magnetic SPM exposed mice. Data are presented as mean ± SEM, and the mouse number is shown by jitter plots (n =
4–8 mice per group). P values for individual comparisons are shown, indicating statistical significance obtained by one-way ANOVA with Tukey’s multiple com-
parison analysis.
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pulmonary tissue, the magnetic micro- and nano-SPM showed an in-
crease in oxidized DHE-derived fluorescence (Fig. 3E). The lung tissue of 
fluorescent SPM-exposed animals could not be evaluated due to exces-
sive fluorescence background originating from the accumulation of 
fluorescent particles in the lungs of exposed mice.

3.4. Protein markers of enhanced ROS formation and inflammation in 
cardiac and pulmonary tissue

NADPH oxidase subunits NOX1 and NOX2 protein expression was 
elevated in the lung tissue of magnetic micro-SPM, but not in the lung 
tissue of nano-SPM exposed mice (Fig. 4A and B). In addition, the 
NADPH oxidase subunit p67phox was measured but did not show a 
trend in either micro- or nano-SPM exposure groups (Fig. 4C). Protein 
kinase C alpha 1 (PKCα1), which promotes NADPH oxidase complex 
formation, was also elevated in the lung tissue but phosphorylated 
myristoylated alanine-rich C-kinase substrate (P-MARCKS), a marker of 
PKCα1 activity, did not change (Fig. 4D and E). CD68 was also elevated 
in the lungs of micro-SPM-exposed mice, indicating local inflammation 
initiation (Fig. 4F).

In cardiac tissue, it was only the nano-SPM that produced a signifi-
cant effect. NADPH oxidase subunit NOX2 and the phosphorylated 
p47phox at serine 328 showed a significant increase in protein expression 
(Fig. 5A and B), pointing to the activation of the ROS-producing 

complex. Monocyte chemoattractant protein-1 (MCP-1), a marker of 
inflammation, was also elevated in the cardiac tissue of nano-SPM, but 
not in the micro-SPM exposed mice (Fig. 5C). P-MARCKS’ expression 
was increased upon nano-SPM exposure, indicating kinase activity 
(Fig. 5D). Heme oxygenase 1 (HO-1) was significantly upregulated in the 
hearts of both nano- and micro-SPM-exposed mice, indicating the acti-
vation of the antioxidant defense through the Nrf2 pathway (Fig. 5E). 
The expression of dihydrofolate reductase (DHFR), was not observed to 
be significantly changed (Fig. 5F).

3.5. CVD incidence from UFP

We combined the downscaled UFP exposure data (at 0.1◦ global 
resolution) with hazard ratios of the increased risk for incident CVD 
adopted from an epidemiological cohort study [51] and computed the 
attributable fractions as a function of UFP number concentrations. Re-
sults are shown in Fig. 6, indicating that CVD incidence from UFP 
exposure is primarily a consequence of air pollution in urban centers. 
The cohort study was performed in cities in the Netherlands, and 
considering it is the only one of its kind, we assume it is representative of 
the population in Europe. For the 27 countries of the European Union 
(EU-27), we estimate a UFP-attributable CVD incidence of 419 (95 % CI: 
78–712) thousand per year for a total population of 446 million. The 
highest incidence occurs in Germany, with 82 (15–142) thousand per 

Fig. 5. Effects of magnetic SPM with different sizes on cardiac protein expression. Western blot analysis of the pulmonary NADPH oxidase subunits NOX2 (A) 
and phosphorylated p47phox (NCF-1) (B), monocyte chemoattractant protein-1 (MCP-1) (C), phosphorylated myristoylated alanine-rich C-kinase substrate (P- 
MARCKS) (D), heme oxygenase-1 (HO-1) (E), and dihydrofolate reductase (DHFR) (F) are shown for the magnetic SPM-exposed mice. Data are presented as mean ±
SEM, and the mouse number is shown by jitter plots (n = 4–8 mice per group). P values for individual comparisons are shown, indicating statistical significance 
obtained by one-way ANOVA with Tukey’s multiple comparison analysis.
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year, followed by Italy with 67 (13–115) and France with 42 (8–71) 
thousand per year. Since these are relatively populous countries in the 
EU-27, we additionally estimated the per capita incidence. We found 
that it is highest in Greece, with 171 (37–256) per 100,000 population 
per year, followed by Hungary, with 165 (34–253) and Bulgaria with 
159 (30–267) per 100,000 annually, whereas it is lowest in Ireland with 
33 (7–53) and Finland with 43 (8–74) per 100,000 population per year. 
If the Dutch epidemiological study would also be representative 
worldwide (absent dedicated cohort studies), we derive a yearly global 
CVD incidence of 5.6 (95 % CI: 1.1–9.3) million, attributable to the 
exposure to UFPs (Fig. 6). Since the global CVD incidence from all causes 
is 47.1 (95 % UI: 40.9–53.9) million per year [52], the UFP-attributable 
incidence amounts to a fraction of about 11–12 % of the total. For data at 
the country level, we refer to Suppl. Fig. S3 and extended results in the 
online supplement.

4. Discussion

4.1. Health implications

In this work, we investigated the biological toxicity of nano-versus 
micro-sized synthetic particles, emphasizing their potential to trans-
migrate through the lung epithelium into the bloodstream and cause 
damage to other, remote organs (e.g. the aorta, heart, and brain). We 
used fluorescence-labeled or magnetic nano- and micro-sized particles to 
trace their biodistribution. We found support for the transmigration of 
nano-sized fluorescent SPM in contrast with micro-sized particles. This 
was indicated e.g. by a lower fluorescence signal in the lung, but a more 
pronounced increase in blood pressure and endothelial dysfunction, and 

detrimental effects through higher ROS levels in aortic and cortex tis-
sues, also reflected by higher expression of ROS-producing enzymes. 
Likewise, magnetic nano-sized SPM showed a tendency to accumulate in 
the liver and heart compared to the micro-sized SPM, with higher blood 
pressure, higher aortic and cerebral ROS levels, and dysregulated car-
diac protein expression. These data indicate that nano-sized SPM pen-
etrates the respiratory epithelium, transmigrates into circulation, and 
affects distant organs, whereas micro-sized SPM primarily affects the 
lungs. Further, we performed a preliminary translational study indi-
cating that the UFP fraction of PM is a major contributor to CVD inci-
dence in Europe and the world. The translational aspect of these findings 
remains to be fully established, noting that there is a particular need for 
longitudinal studies.

The research on air pollution, especially particulate matter (PM), has 
gained attention from the medical and public health research commu-
nities due to its association with morbidity and excess mortality, 
marking it as a global risk factor comparable to tobacco smoking [52]. 
There is substantial epidemiological and clinical evidence supporting 
the significant contribution of PM to adverse human health effects, 
impacting both the respiratory and remote organ systems [53]. 
Numerous studies examined the differential effects of PM composition, 
providing an overview of the role and contribution of various toxicants 
carried by airborne PM [54–56]. Conversely, the studies addressing the 
effects of differential PM size have thus far been inconclusive. A possible 
reason is that air pollution-derived UFPs exhibit a high load-to-mass 
ratio of surface toxicants interacting with biological tissue, surpassing 
size effects [12]. Further, the use of biologically inert PM, e.g. for 
contrast agents, drug delivery systems and food or cosmetic stabilizers 
has generated contradicting findings [57,58]. Especially in preclinical 

Fig. 6. European and global, annual CVD incidence attributed to UFP. Units are the number of cases per surface area of 10 km × 10 km. These results suggest 
that UFP exposure and CVD impacts are predominant in the urban environment.
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research, chemically inert particles, such as TiO2, silver, gold, or syn-
thetic carbon/plastic particles have been used [59–61].

Here, we provide novel insights into the direct effects of PM size on 
the presence of elevated ROS levels and inflammation in the lung and 
remote organ systems such as the aorta, heart, and brain. DHE staining 
provides only an overview of the cumulative H2O2 and O2⋅- production, 
and is not representative of the cellular redox state for which the mea-
surement of ROS formation and degradation by antioxidants should be 
assessed [62]. Using synthetic particles, i.e. apart from the hazardous 
chemical components present in air pollution, we show that the size of 
PM plays a significant role in detrimental effects on multiple organ 
systems. This may indicate additive or synergistic adverse effects by 
ultrafine or nano-particles with elevated toxicant loads due to a high 
surface/mass ratio associated with high particle number concentrations 
[33,63]. Ambient particles contain chemically active substances (such as 
transition and heavy metals, peroxides, quinones, endotoxins) known to 
additionally induce inflammation and promote oxidative stress condi-
tions [64–68]. This has direct consequences for exposure-health asso-
ciations as shown by more frequent cardiorespiratory emergency 
department visits of exposed individuals in dependence of a higher 
oxidative potential of PM2.5 [69]. In general, the oxidative potential of 
PM2.5 and UFPs contributes to the development of chronic diseases but 
also causes acute cardiovascular events [70,71]. Oxidative potential of 
ambient air pollution particles shows large regional and seasonal vari-
ations [72,73]. Of note, in the present study we exclude the contribution 
of the particle oxidative potential to the observed functional and 
biochemical changes since the particles used were of synthetic origin 
and chemically inert.

4.2. UFP pathomechanisms

Oxidative stress and inflammation play a major role in vascular 
dysfunction as they interfere with the pathways regulating vascular 
tone. Nitric oxide (⋅NO), as an important signaling molecule, is suscep-
tible to oxidative stress, as the reaction with superoxide (O2⋅-) not only 
creates peroxynitrite (ONOO− ) at the expense of ⋅NO, but it also impairs 
⋅NO production by uncoupling eNOS [9,74]. In the present study, the 
origin of O2⋅- can be attributed to the activation of the NADPH oxidase 
(NOX1/2), supported by the elevated PKC activity through phosphory-
lation of MARCKS and p47phox at serine 328, although the exact cellular 
origin cannot be assigned since tissue homogenates were used. The 
enhanced levels of ROS in the aortic tissue observed after exposure to 
nano-sized SPM correlate with the impairment of 
endothelium-dependent vasodilation and the lowering of eNOS expres-
sion by trend. The upregulation of DHFR by trend in the heart tissue of 
mice exposed to nano-sized SPM may indicate a counter-regulatory 
attempt of the cell to compensate for the impaired endothelial func-
tion by “recycling” dihydrobiopterin (BH2) back to tetrahydrobiopterin 
(BH4) for proper eNOS function [75]. Overall, the enhanced oxidative 
stress condition is reflected by the upregulation of the stress response 
and antioxidant enzyme HO-1 by nano-sized SPM in the heart.

Elevation of ET-1 expression, a potent vasoconstrictor that is upre-
gulated by oxidative stress [74], points to the ability of nano-sized PM to 
promote endothelial cell activation via NOX-derived ROS [76] and 
oxidative eNOS uncoupling by S-glutathionylation [77] contributing to 
vascular dysfunction. ET-1 is also a mitogen [78], and some studies have 
shown that PM exposure can induce vascular hypertrophy [79]. In 
general, PM-induced inflammation also promotes vascular dysfunction 
[80–82], e.g. by an oxidative burst of activated leukocytes upon tight 
adhesion to the endothelium or infiltration into the vascular wall [83]. 
Elevated levels of CD68 in the pulmonary tissue of micro-sized SPM 
point to local inflammation in the lung, which is also accompanied by an 
increase in ROS production, while increased expression of MCP-1 in the 
cardiac tissue of nano-sized SPM points to the ability of ultrafine parti-
cles to transmigrate through the lung epithelium, reach the circulation 
and cause inflammation and remote organ damage, notably in the 

cardiovascular system. Elevation of CD68 was also found in the brain of 
PM2.5-exposed Alzheimer’s disease prone mice together with other cy-
tokines and chemokines [84]. Higher MCP-1 levels were found in rats 
exposed to concentrated ambient fine particulates accompanied by 
elevated TNF-α and diminished IL-10 levels [85]. Likewise, MCP-1 in-
duction was observed in cultured macrophages exposed to 
transition-metal rich residual oil fly ash particles together with TNF-α, 
IL-6 and IL-1β levels [86]. CD68 is highly expressed in monocytes and 
phagocytes and, therefore, indicative of enhanced infiltration of these 
immune cells into tissues. MCP-1 is one of the key chemokines that 
regulate the migration and infiltration of monocytes/macrophages. 
These markers also support the concept that inhaled particles are 
taken-up by resident macrophages in the lung [87], which then cross the 
air-blood barrier, reach the circulation and remote organs and most 
likely end-up in the liver [88].

In addition to inflammatory and NOX-mediated damage, nano- (to a 
certain extent also micro-) particles alter redox homeostasis, cause 
mitochondrial oxidative stress and damage and thereby dysfunction of 
mitochondrial processes [89–91]. Nano-particles exacerbate ische-
mia/reperfusion damage in isolated heart tissue by changes in the 
opening probability of the mitochondrial permeability transition pore 
[92]. Mitochondria were previously shown to be a prominent source of 
ROS in different PM exposure models [93]. When human bronchial 
epithelial cells were repeatedly exposed to low concentrations of fine 
(2.5–0.18 μm) or quasi-ultrafine particles (0.18 μm) no significant 
cytotoxicity, apoptosis or changes of mitochondrial membrane potential 
(ΔΨm) and intracellular ATP content were observed [91]. However, 
oxidative phosphorylation, mitochondrial mass and mitochondrial su-
peroxide anion generation were increased, also leading to altered 
mitochondrial dynamics and NRF2-dependent stress response. However, 
another study found that exposure to residual oil fly ash impairs cardiac 
mitochondrial function by decreasing respiration and ATP synthesis, all 
of which caused altered response to the pacing drug isoproterenol and 
changes in contractile reserve [94].

Another pathway by which PM can influence the cardiovascular 
system is by activation of the sympathetic nervous system (SNS) and the 
amygdala stemming from the translocation of the UFPM through the 
olfactory nerve [95]. The activation of the SNS leads to the release of 
catecholamines, causing vascular constriction, enhanced blood pressure 
and vascular inflammation [96,97], as observed here, together with the 
increase in cortical ROS production. In addition, modulation of the SNS 
can disrupt the circadian rhythm, further disrupting cardiovascular 
redox balance by phase shifts of genes encoding for ROS-producing and 
degrading proteins [98]. Likewise, UFPM can cross the blood-brain 
barrier [99] and vehicle exhaust particles can alter the permeability of 
the blood-brain barrier [100] to cause cerebral oxidative stress and 
neuroinflammation [101]. Air pollutants cause circadian rhythm 
impairment by adverse redox regulation of the clock core components 
such as period, cryptochrome, clock and BMAL1. It was also previously 
observed that SPM can disrupt cardiac function through myocardial 
injury and apoptosis via ROS [102].

In support of our suggested pathomechanisms, previous work 
showed that nanometer-sized PM (<200 nm) from urban traffic causes 
oxidative stress through enhanced 4-hydroxynonenal and 3-nitrotyro-
sine levels, and inflammation in olfactory epithelial cells with subse-
quent activation of astrocytes, microglia and upregulation of markers of 
neuroinflammation [103]. Inhalation of airborne, iron-rich nano-
particles (15–40 nm) led to mitochondrial accumulation in the hearts of 
exposed healthy subjects and an increase of markers of cardiac oxidative 
stress and cardiovascular disease [104]. A study found that small gold 
nano-particles accumulate in atherosclerotic plaque areas of ApoE 
knockout mice on a high-fat diet (instillation of the gold particles) and in 
surgical specimens of carotid artery disease from patients at risk of 
stroke [32]. In contrast, for larger nanoparticles it was reported that 
exposure of healthy subjects to small and ultrasmall graphene oxide 
nanosheets (thickness 1.2–1.6 nm, lateral size 427 vs 153 nm) did not 
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affect heart rate, blood pressure, lung function and inflammatory 
markers, and only minor changes of the plasma proteome and ex vivo 
thrombus formation were observed [105]. The reactive oxygen species 
and oxidative damage resulting from different PM categories in the lung 
lining fluid can be predicted using computational models supporting the 
formation of superoxide, hydrogen peroxide, hydroxyl radicals and 
3-nitrotyrosine in this model [106,107]. The model even predicted the 
severity of chronic lung diseases by considering endogenous inflam-
matory processes in regionally different populations with varying PM 
exposure concentrations [68]. The most prominent human health effects 
of 10 engineered nanomaterials were previously summarized by a 
multi-laboratory toxicological assessment using in vivo and in vitro ap-
proaches [108].

4.3. Biomedical impact of particle size

Research during the last two decades revealed the difference in 
toxicity between PM10 and PM2.5, as the larger particles do not penetrate 
as deeply into the respiratory tract and are more easily eliminated 
[109–111]. It is important to recall that the larger size fraction of PM10 
(which encompasses PM2.5) presents a significant risk factor for many 
diseases [112], also due to the loading with environmental toxins. The 
health differences between UFPs and PM2.5 remain understudied, and 
only a few cohort studies have been reported. This is mainly because 
UFPs were, until recently, not routinely measured in air pollution net-
works, and accordingly, are not part of the legislature, and their health 
risk may be strongly underestimated. A study from China showed that 
only particles smaller than 1 μm (PM1) are positively associated with 
cardiovascular morbidity [113]. Another study from China demon-
strated a positive association between PM in the size range of 0.25–0.5 
μm and cardiovascular mortality, while the mortality from respiratory 
diseases was insignificant [114]. A study in Erfurt, Germany, found a 
similarly higher risk for cardiovascular mortality from UFPs than res-
piratory mortality [115]. The results of these two studies support the 
transmigration of nano-sized particles through the lung and direct 
damage to remote organs.

A recent study in Copenhagen, Denmark, established that hospital 
admissions for cardiovascular and respiratory diseases positively 
correlated with increased UFP concentrations [116]. Interestingly, after 
adjustment for PM2.5, all associations with respiratory diseases 
decreased. In contrast, associations with cardiovascular disease 
increased, pointing to a direct effect of UFPs, but not of larger PM, on the 
cardiovascular system. Data from a Dutch cohort corroborate the find-
ings of cardiovascular disease association with UFPs rather than coarser 
PM, highlighting this through a two-pollutant model where UFPs 
remained the only positively associated variable for cardiovascular risk 
[51]. On the other hand, in a cohort from Toronto, Canada, no change in 
the association between UFPs and acute myocardial infarction and 
congestive heart failure was observed after correcting for exposure to 
PM2.5 and •NO2 [117], while a recent study that size-separated micro--
from nano-particles corroborated the association of UFPs with increased 
mortality risk in Canada’s two largest cities [118]. The European Study 
of Cohorts for Air Pollution Effects (ESCAPE) did not find a correlation 
between PM2.5 concentrations and all cardiovascular disease deaths 
[119].

4.4. CVD incidence from UFP exposure

Our European and global calculations of UFP exposure and potential 
consequences for CVD incidence are presented in the Supplement. These 
results are associated with considerable uncertainty and are intended to 
derive a first-order estimate of cardiovascular disease outcomes in 
humans. The annual average UFP concentration in the cohort study of 
Downward et al. (2018) [51], performed among residents of major 
metropolitan areas in the Netherlands, was 11,110 (±2400) particles 
cm− 3. This is at the higher end of that observed in European cities (e.g., 

between Milan and Barcelona) but lower than in Chinese cities and 
Arabian Gulf states, for example [120,121]. It captures a good part but 
not the full spread we find in global, annual UFP exposure, and clearly, 
additional cohort studies are needed to increase statistical robustness. 
Even though the Downward et al. (2018) [51] study is the only one 
available that directly attributes CVD incidence to UFP, it should be 
noted that these outcomes are qualitatively consistent with epidemio-
logical studies that relate UFP to hypertension and diabetes [122,123] 
and congestive heart failure and acute myocardial infarction [124], as 
well as enhanced mortality risk [125]. Hence, the quantitative outcomes 
presented here may be uncertain, but they corroborate the high likeli-
hood that exposure to UFP contributes to CVD incidence.

4.5. Limitations of the study

The nano-SPM (mean diameter of 200–250 nm) used for the present 
study are not “ultrafine” particles by definition since this term is 
generally used for particles ≤100 nm. However, the particle size dis-
tribution admitted in our experiments included UFPs even though the 
mass mean size was larger. The choice of a chemically inert synthetic 
material was based on the primary objective of the present study to 
determine size effects instead of additional mechanisms through the 
chemical loading of particles. Previous work reports a smaller mean 
diameter for efficient transmigration of inhaled nanoparticles of around 
50 nm [32], although a systematic review on the deposition of particles 
in different lung tracts reported a range of up to 200 nm to reach the 
alveolar region and transmigrate into the bloodstream [126]. Our study 
encountered several limitations related to PM exposure. A major chal-
lenge was achieving precise exposure concentrations due to the 
non-uniform size distribution of PM, as larger particles disproportion-
ately contribute to the measured mass concentrations, while smaller 
particles dominate the number distributions. This complicates analyses 
based on average PM diameters. The low PM amount available through 
inhalation was insufficient for clear MRI contrast, with mouse exposure 
levels far below human application thresholds of contrast agents by 
intravenous administration. This limitation could be addressed by 
longer exposure times, though uncertainties remain due to poorly 
characterized clearance processes. The lack of pronounced fluorescence 
signals in mouse lungs might be due to relatively high exhalation rates of 
nanoparticles, rather than general transmigration into the bloodstream. 
Whereas endotoxin contamination of the synthetic particle preparations 
can be excluded (this was highly purified material as advertised on the 
companies’ webpages), the different coating of the iron oxide particles 
(silica-versus polystyrene-encapsulation) must be mentioned and could 
have impacted the observed effects. Further, we cannot exclude that 
appreciable numbers of nano-SPM reached the circulation via oral up-
take, e.g. from fur grooming, since we used a whole body exposure 
system (which would still not explain the lack of fluorescence in the lung 
upon exposure to nano-SPM). Oral uptake would then allow the particles 
to reach the circulation by penetration of the gut, which has a higher 
permeability than the lung epithelium. The changes in oxidative stress 
and inflammation markers in the pulmonary and cardiac tissue are 
derived from the whole tissue homogenate and do not represent the 
expression of only one cell type. Finally, some parameters are under-
powered (e.g. n = 3–4), which may result in reduced significance. 
Despite these uncertainties, our findings of nano-sized SPM effects on 
blood pressure and oxidative stress in remote organs directly support 
their efficient transmigration, aligning with human data linking UFP 
exposure to cardiovascular risks. A detailed consideration of all limita-
tions can be found in the online supplement.

4.6. Conclusions and clinical implications

Our study highlights the distinct biological impacts of nano- and 
micro-sized synthetic particles in exposed mice, suggesting significant 
human health effects. Nano-sized particles can transmigrate through 
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lung epithelium into the bloodstream, affecting distant organs such as 
the aorta, heart, and brain. This suggests significant direct systemic 
impacts, extending beyond the pulmonary effects typically associated 
with larger micro-sized particles, which tend to directly affect the res-
piratory system, causing pulmonary damage with localized and possible 
indirect systemic health outcomes.

Our data show that nano-particles (in our study with a mean mass- 
related diameter <250 nm) enhance the oxidative stress and inflam-
matory parameters in remote organ systems, while micro-particles (in 
our study with mean mass-related diameters of 2.1 and 4.1 μm) pri-
marily impact the pulmonary system. The distinction is important in 
defining future studies, as different organ systems could be impacted by 
PM of varying sizes through different mechanisms, also leading to a 
differential increase in the risk of specific disease categories, notably 
cardiovascular versus respiratory diseases, as supported by several 
clinical/epidemiological studies on UFP exposure–health associations. 
Our preliminary health burden estimate suggests significant impacts of 
ultrafine (nano-)particles on cardiovascular disease incidence at the 
European and global scales.

Our results are unexpected since, thus far, direct functional and 
biochemical effects of chemically inert particles were assigned to di-
ameters below 100 nm. Importantly, previous work has shown that 
chemically inert gold particles with a diameter of 5 nm show signifi-
cantly more pronounced uptake into the circulation by higher levels in 
blood and urine in exposed healthy individuals than particles with a size 
of 30 nm [32]. Nevertheless, also nano-particles ≥100 nm may trans-
migrate efficiently, although the deposited particles tend to concentrate 
in the upper pulmonary areas such as the tracheobronchial airway and 
to a lesser extent in the alveolar region [127].

Clinically, these findings emphasize the need for healthcare frame-
works to consider particle size in risk assessments and, ultimately, in air 
quality directives. The ability of nano-sized particles to cause systemic 
harm underscores their role in causing and/or exacerbating cardiovas-
cular conditions and necessitates targeted public health strategies to 
mitigate their effects. This warrants the comprehensive incorporation of 
UFP measurements into air quality monitoring stations, enabling the 
development of enhanced spatial and temporal resolution exposure 
distributions to study long-term associations in epidemiological cohort 
studies. However, this may pose challenges in many low- and middle- 
income countries, where PM2.5 monitoring is frequently not imple-
mented. Our modeling approach to address exposure-health interactions 
may help fill these gaps.
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